Subscribe free to our newsletters via your
. Medical and Hospital News .




TIME AND SPACE
Quantum Photon Properties Revealed in Another Particle-the Plasmon
by Jessica Stoller-Conrad for Caltech News
Pasadena CA (SPX) Apr 04, 2014


An artist's representation of a plasmonic waveguide. Image courtesy Jim Fakonas and Caltech.

For years, researchers have been interested in developing quantum computers-the theoretical next generation of technology that will outperform conventional computers. Instead of holding data in bits, the digital units used by computers today, quantum computers store information in units called "qubits."

One approach for computing with qubits relies on the creation of two single photons that interfere with one another in a device called a waveguide. Results from a recent applied science study at Caltech support the idea that waveguides coupled with another quantum particle-the surface plasmon-could also become an important piece of the quantum computing puzzle.

The work was published in the print version of the journal Nature Photonics the week of March 31.

As their name suggests, surface plasmons exist on a surface-in this case the surface of a metal, at the point where the metal meets the air. Metals are conductive materials, which means that electrons within the metal are free to move around. On the surface of the metal, these free electrons move together, in a collective motion, creating waves of electrons.

Plasmons-the quantum particles of these coordinated waves-are akin to photons, the quantum particles of light (and all other forms of electromagnetic radiation).

"If you imagine the surface of a metal is like a sea of electrons, then surface plasmons are the ripples or waves on this sea," says graduate student Jim Fakonas, first author on the study.

These waves are especially interesting because they oscillate at optical frequencies. Therefore, if you shine a light at the metal surface, you can launch one of these plasmon waves, pushing the ripples of electrons across the surface of the metal. Because these plasmons directly couple with light, researchers have used them in photovoltaic cells and other applications for solar energy. In the future, they may also hold promise for applications in quantum computing.

However, the plasmon's odd behavior, which falls somewhere between that of an electron and that of a photon, makes it difficult to characterize.

"According to quantum theory, it should be possible to analyze these plasmonic waves using quantum mechanics"-the physics that governs the behavior of matter and light at the atomic and subatomic scale-"in the same way that we can use it to study electromagnetic waves, like light," Fakonas says. However, in the past, researchers were lacking the experimental evidence to support this theory.

To find that evidence, Fakonas and his colleagues in the laboratory of Harry Atwater, Howard Hughes Professor of Applied Physics and Materials Science, looked at one particular phenomenon observed of photons-quantum interference-to see if plasmons also exhibit this effect.

The applied scientists borrowed their experimental technique from a classic test of quantum interference in which two single, identical photons are launched at one another through opposite sides of a 50/50 beam splitter, a device that acts as an imperfect mirror, reflecting half of the light that reaches its surface while allowing the the other half of the light to pass through.

If quantum interference is observed, both identical photons must emerge together on the same side of the beam splitter, with their presence confirmed by photon detectors on both sides of the mirror.

Since plasmons are not exactly like photons, they cannot be used in mirrored optical beam splitters. Therefore, to test for quantum interference in plasmons, Fakonas and his colleagues made two waveguide paths for the plasmons on the surface of a tiny silicon chip. Because plasmons are very lossy-that is, easily absorbed into materials that surround them-the path is kept short, contained within a 10-micron-square chip, which reduces absorption along the way.

The waveguides, which together form a device called a directional coupler, act as a functional equivalent to a 50/50 beam splitter, directing the paths of the two plasmons to interfere with one another. The plasmons can exit the waveguides at one of two output paths that are each observed by a detector; if both plasmons exit the directional coupler together-meaning that quantum interference is observed-the pair of plasmons will only set off one of the two detectors.

Indeed, the experiment confirmed that two indistinguishable photons can be converted into two indistinguishable surface plasmons that, like photons, display quantum interference.

This finding could be important for the development of quantum computing, says Atwater. "Remarkably, plasmons are coherent enough to exhibit quantum interference in waveguides," he says.

"These plasmon waveguides can be integrated in compact chip-based devices and circuits, which may one day enable computation and measurement schemes based on quantum interference."

Before this experiment, some researchers wondered if the photon-metal interaction necessary to create a surface plasmon would prevent the plasmons from exhibiting quantum interference. "Our experiment shows this is not a concern," Fakonas says.

We learned something new about the quantum mechanics of surface plasmons. The main thing is that we were able to validate the theoretical prediction; we showed that this type of interference is possible with plasmons, and we did a pretty clean measurement," he says.

"The quantum interference displayed by plasmons appeared to be almost identical to that of photons, so I think it would be very difficult for someone to design a different structure that would improve upon this result."

The work was published in a paper titled "Two-plasmon quantum interference." In addition to Fakonas and Atwater, the other coauthors are Caltech undergraduate Hyunseok Lee and former undergraduate Yousif A. Kelaita (BS '12). The work was supported by funding from the Air Force Office of Scientific Research, and the waveguide was fabricated at the Kavli Nanoscience Institute at Caltech.

.


Related Links
Kavli Nanoscience Institute
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TIME AND SPACE
New Zealand physicists split and collide ultracold atom clouds
Dunedin, New Zealand (SPX) Apr 03, 2014
Physicists at New Zealand's University of Otago have pushed the frontiers of quantum technology by developing a steerable 'optical tweezers' unit that uses intense laser beams to precisely split minute clouds of ultracold atoms and to smash them together. The Otago researchers' feat is set to enhance efforts to understand the mysterious ways that atoms interact at temperatures of less than ... read more


TIME AND SPACE
US landslide towns divided by mud, united by grief

Malaysia PM to visit Perth as jet-search window narrowsw/ll

No clues in MH370 cockpit transcript as search wears on

Emergency management in Arctic: Experts offer seven key recommendations

TIME AND SPACE
USAF Awards Lockheed Martin Full Production Contracts For Next Two GPS 3 Satellites

India to have own satellite navigation system by 2015

FAA Approves DeLorme Communicator For Service In Alaska

LockMart Taps General Dynamics For Network Element On GPS 3 Birds

TIME AND SPACE
Technofossils are an unprecedented legacy left behind by humans

Scientists build 'designer' chromosome

New Technique Sheds Light on Human Neural Networks

Eyes are windows to the soul -- and evolution

TIME AND SPACE
Scientists solve the riddle of zebras' stripes

New functions for 'junk' DNA?

New yeast species travelled the globe with a little help from the beetles

Black market for python skins worth $1 bn a year: report

TIME AND SPACE
Liberia confirms spread of 'unprecedented' Ebola epidemic

Iraq reports first suspected polio case since 2000

Guinea confirms Ebola as source of deadly epidemic

Climate Conditions Help Forecast Meningitis Outbreaks

TIME AND SPACE
Rebel China village goes to polls, protest leader off ballot

Biggest show by Ai Weiwei to open in Berlin without him

Rebel China village re-elects protest leader in sombre vote

Activist predicts fewer China prisoner releases

TIME AND SPACE
Japanese mobsters launch own website

Facebook announces steps to stop illegal gun sales

French navy arrests pirates suspected of oil tanker attack

Mexican vigilantes accuse army of killing four

TIME AND SPACE
Bank of China 2013 net profit up 12 percent

Dagong chief says credit ratings need 'Chinese wisdom'

Some debt defaults 'healthy' for China market: central bank

China's politically-sensitive yuan falls after reform




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.