. Medical and Hospital News .




TIME AND SPACE
Quantum Physics: Look But Don't Touch
by Staff Writers
Madrid, Spain (SPX) May 15, 2013


File image.

Improving our understanding of the human brain, gathering insights into the origin of our universe through the detection of gravitational waves, or optimizing the precision of GPS systems- all are difficult challenges to master because they require the ability to visualize highly fragile elements, which can be terminally damaged by any attempt to observe them.

Now, quantum physics has provided a solution. In an article published in Nature Photonics, researchers at the Institute of Photonic Sciences (ICFO) report the observation of a highly fragile and volatile body through a new quantum-mechanical measurement technique.

Researchers from the group led by Morgan Mitchell applied the so-called "quantum non-demolition measurement" to a tiny cloud of atoms. They were able to observe the spinning of the electrons in the atoms, and more importantly, the atom cloud was not disturbed in the process.

It is the first time quantum non-demolition measurement has been demonstrated with any material object. The same method could be extended to permit the observation of individual atoms.

In the experiment, scientists prepared light pulses with photons in complementary states, and then sent them through the cloud of atoms, measuring their polarization on the way out.

"A first measurement gives us information reflecting the action of the first light pulse. A second measurement, taken with photons in a complementary state from the first, cancels the influence of the preliminary pulse, allowing us to observe the original characteristics of the object," explains Dr. Robert Sewell, researcher at ICFO. This process has enabled the team to gather precise information on the magnetic field of the atom's surroundings.

The information obtained exceeds the so-called "standard quantum limit", which quantifies the maximum amount of information obtainable with any traditional probing.

Two achievements made this possible. On one hand, researchers were able to structure the observation so that the noise resulting from the visualization was shifted away from the object being measured and into a different variable.

In addition, they introduced quantum statistical correlations among the atoms so that they were able to gather in one measurement what previously they needed a collection of measurements to observe. "This experiment provides rigorous proof of the effectiveness of quantum physics for measuring delicate objects" concludes Sewell.

Link to the paper.

.


Related Links
ICFO-The Institute of Photonic Sciences
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear

...





TIME AND SPACE
Scientists demonstrate pear shaped atomic nuclei
Liverpool UK (SPX) May 14, 2013
Scientists at the University of Liverpool have shown that some atomic nuclei can assume the shape of a pear which contributes to our understanding of nuclear structure and the underlying fundamental interactions. Most nuclei that exist naturally are not spherical but have the shape of a rugby ball. While state-of-the-art theories are able to predict this, the same theories have predicted t ... read more


TIME AND SPACE
How should geophysics contribute to disaster planning?

Russia Boosts Emergencies Space Monitoring

Prince Harry tours hurricane-hit New Jersey

Finding a sensible balance for natural hazard mitigation with mathematical models

TIME AND SPACE
GPS IIF-4 Launched From Cape Canaveral

China's BeiDou satellite navigation system has broad commercial uses

Fourth Boeing GPS IIF Satellite Joins Constellation on Orbit

First new Galileo satellite arrives at ESA for space testing

TIME AND SPACE
Pet lovers take blogging to the next level

Searching for Clandestine Graves with Geophysical Tools

Researchers: Human intelligence not solely result of large brain areas

Scientists see brain's ability to 'rewire' itself after damage, disease

TIME AND SPACE
Mining the botulinum genome

US lawmakers seek to ban captive big cats

Lack of genetic diversity threatens India's tigers with extinction

Trout invasion behind Yellowstone elk decline: study

TIME AND SPACE
Russia has 'no anti-AIDS strategy': official

H1N1 discovered in marine mammals

China bird flu devastates Shanghai family

First proof of patient-to-nurse infection of coronavirus: WHO

TIME AND SPACE
Some Chinese tourists 'uncivilised': top official

At Cannes, shock movie tests China's boundaries

Change in China 'inevitable', says blind activist Chen

China social media hailed after official toppled

TIME AND SPACE
Report: Belgian army sold helicopters to firm linked to trafficking

US feds 'kidnapped' suspected druglord: Guinea-Bissau

US ships look to net big contraband catches in Pacific

US court convicts Somali pirates in navy ship attack

TIME AND SPACE
HSBC says will cut more costs by 2016

Outside View: Europe's permanent recession

China urban private sector wages up 17.1% in 2012

China central bank 'looking into' Bloomberg scandal




The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement