Medical and Hospital News  
CHIP TECH
Quantum computer coding in silicon now possible
by Staff Writers
Sydney, Australia (SPX) Nov 23, 2015


Project leader Andrea Morello (left) with lead authors Stephanie Simmons (middle) and Juan Pablo Dehollain (right) in the UNSW laboratory where the experiments were performed. Image courtesy Paul Henderson-Kelly and UNSW. For a larger version of this image please go here.

A team of Australian engineers has proven - with the highest score ever obtained - that a quantum version of computer code can be written, and manipulated, using two quantum bits in a silicon microchip. The advance removes lingering doubts that such operations can be made reliably enough to allow powerful quantum computers to become a reality.

The result, obtained by a team at Australia's University of New South Wales (UNSW) in Sydney, appears in the international journal, Nature Nanotechnology. The quantum code written at UNSW is built upon a class of phenomena called quantum entanglement, which allows for seemingly counterintuitive phenomena such as the measurement of one particle instantly affecting another - even if they are at opposite ends of the universe.

"This effect is 1famous for puzzling some of the deepest thinkers in the field, including Albert Einstein, who called it 'spooky action at a distance'," said Professor Andrea Morello, of the School of Electrical Engineering and Telecommunications at UNSW and Program Manager in the Centre for Quantum Computation and Communication Technology, who led the research. "Einstein was sceptical about entanglement, because it appears to contradict the principles of 'locality', which means that objects cannot be instantly influenced from a distance."

Physicists have since struggled to establish a clear boundary between our everyday world - which is governed by classical physics - and this strangeness of the quantum world. For the past 50 years, the best guide to that boundary has been a theorem called Bell's Inequality, which states that no local description of the world can reproduce all of the predictions of quantum mechanics.

Bell's Inequality demands a very stringent test to verify if two particles are actually entangled, known as the 'Bell test', named for the British physicist who devised the theorem in 1964.

"The key aspect of the Bell test is that it is extremely unforgiving: any imperfection in the preparation, manipulation and read-out protocol will cause the particles to fail the test," said Dr Juan Pablo Dehollain, a UNSW Research Associate who with Dr Stephanie Simmons was a lead author of the Nature Nanotechnology paper.

"Nevertheless, we have succeeded in passing the test, and we have done so with the highest 'score' ever recorded in an experiment," he added.

In the UNSW experiment, the two quantum particles involved are an electron and the nucleus of a single phosphorus atom, placed inside a silicon microchip. These particles are, literally, on top of each other - the electron orbits around the nucleus. Therefore, there is no complication arising from the spookiness of action at a distance.

However, the significance of the UNSW experiment is that creating these two-particle entangled states is tantamount to writing a type of computer code that does not exist in everyday computers. It therefore demonstrates the ability to write a purely quantum version of computer code, using two quantum bits in a silicon microchip - a key plank in the quest super-powerful quantum computers of the future.

"Passing the Bell test with such a high score is the strongest possible proof that we have the operation of a quantum computer entirely under control," said Morello. "In particular, we can access the purely-quantum type of code that requires the use of the delicate quantum entanglement between two particles."

In a normal computer, using two bits one, could write four possible code words: 00, 01, 10 and 11. In a quantum computer, instead, one can also write and use 'superpositions' of the classical code words, such as (01 + 10), or (00 + 11). This requires the creation of quantum entanglement between two particles.

"These codes are perfectly legitimate in a quantum computer, but don't exist in a classical one," said UNSW Research Fellow Stephanie Simmons, the paper's co-author. "This is, in some sense, the reason why quantum computers can be so much more powerful: with the same number of bits, they allow us to write a computer code that contains many more words, and we can use those extra words to run a different algorithm that reaches the result in a smaller number of steps."

Morello highlighted the importance of achieving the breakthrough using a silicon chip: "What I find mesmerising about this experiment is that this seemingly innocuous 'quantum computer code' - (01 + 10) and (00 + 11) - has puzzled, confused and infuriated generations of physicists over the past 80 years.

"Now, we have shown beyond any doubt that we can write this code inside a device that resembles the silicon microchips you have on your laptop or your mobile phone. It's a real triumph of electrical engineering," he added.

In addition to the team lead by Morello, the work was supported by Professor Andrew Dzurak and his team at UNSW, as well as collaborators from the University of Melbourne and Japan's Keio University.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of New South Wales
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CHIP TECH
Photons on a chip set new paths for secure communications
Melbourne, Australia (SPX) Nov 23, 2015
Researchers from RMIT University in Melbourne have helped crack the code to ultra-secure telecommunications of the future in an international research project that could also expedite the advent of quantum computing. A team co-led by RMIT MicroNano Research Facility Director Professor David Moss has added a new twist to create photon pairs that fit on a tiny computer chip. The breakt ... read more


CHIP TECH
Children study under open skies as quake rocks education in Pakistan

Preventing famine with mobile phones

MSF hospital strike was 'human error': US general

UN details doubling in weather disasters ahead of climate summit

CHIP TECH
China to set up BDS international maritime surveillance center

Raytheon completes GPS III launch readiness exercise

LockMart advances threat protection on USAF GPS Control Segment

Orbital ATK products enable improved global positioning on Earth

CHIP TECH
Fossilized Homo erectus skull found in China

Clues emerge about the earliest known Americans

Human brains evolved to be more responsive to environmental influences

'Fourth strand' of European ancestry originated with hunter-gatherers isolated by Ice Age

CHIP TECH
Over half of world's primates on brink of extinction: experts

Wolves return to Warsaw area after decades

The cuckoo sheds new light on the scientific mystery of bird migration

Why are some wild animals more tolerant to human interaction than others?

CHIP TECH
Doubling numbers on HIV drugs could 'break' epidemic: UN

Chemical engineers have figured out how to make vaccines faster

Monkeys in Asia harbor virus from humans, other species

Drug shields infants from HIV in breastmilk: study

CHIP TECH
Chinese journalist, 71, appeals seven year jailing

Chinese media says birth discrimination must end

Mountains may depart, says Tibetan filmmaker

China says making 'enormous efforts' against torture

CHIP TECH
U.S., U.K. help build West African partners' anti-piracy capabilities

Villagers recall fear as troops fired in 'Chapo' raid

Chinese 'thief' swallowed diamond, tried to flee Thailand

Army's role questioned in missing Mexican students case

CHIP TECH
Looking for a job? Online is where it's at

Frankfurt yuan trading starts on new China platform

China weighs on Asia-Pacific business outlook

Eurozone economy cools as China slowdown hurts exports









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.