Medical and Hospital News  
PHYSICS NEWS
Quantum expander for gravitational-wave observatories
by Staff Writers
Changchun, China (SPX) Dec 12, 2019

Illustration of the concept for a quantum expander for gravitational-wave detectors

Ultra-stable laser light that was stored in optical resonators of up to 4km length enabled the first observations of gravitational waves from inspirals of binary black holes and neutron stars. Due to the rather low bandwidth of the optical resonator system, however, the scientifically highly interesting post-merger signals at frequencies above a few hundred hertz could not be resolved. Such information would give access to the physics of neutron stars, allowing to study the ultra-dense quantum matter and possibly to find Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences
between gravity and quantum physics.

Recently, scientists MSc. Mikhail Korobko and Prof. Roman Schnabel from the University of Hamburg and Dr. Yiqiu Ma and Prof. Yanbei Chen from the California Institute of Technology proposed a novel all-optical approach to expanding the detection bandwidth of gravitational-wave observatories towards kilohertz frequencies.

What they call 'quantum expander' takes advantage of squeezing the quantum uncertainty of the laser light inside the optical resonator system. While squeezing the quantum uncertainty of the laser light before injection into the resonator system is already routinely used in all gravitational-wave observatories since April 2019, the new add-on will specifically improve the signal-to-noise-ratio at kilohertz frequencies, in fact, without deteriorating today's high performance at lower frequencies.

The scientists propose placing a nonlinear crystal inside the so-called signal-recycling cavity, which is a subsystem in every gravitational-wave observatory today and pump this crystal with green laser light having half the wavelength of the main laser light used in the observatory.

The interaction between the pump and the main light leads to a squeezed uncertainty in the quantum fluctuations of the main laser. When the signal-recycling cavity length is controlled to remain a non-integer multiple of the laser wavelength, especially the high frequency quantum fluctuations of the laser light are squeezed in addition to any squeezing injected from the outside.

The newly invented 'quantum expander' is fully compatible with previously invented quantum-noise-suppression techniques. It is intrinsically stable and doesn't require significant modifications to the general topology of the observatories. What it does require is a further improved quality of optical components for further reduction in loss of photons. The 'quantum expander' may find applications beyond gravitational-wave detection in the areas of quantum metrology and quantum optomechanics.

Research paper


Related Links
Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences
The Physics of Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


PHYSICS NEWS
New instrument extends LIGO's reach
Boston MA (SPX) Dec 06, 2019
Just a year ago, the National Science Foundation-funded Laser Interferometer Gravitational-wave Observatory, or LIGO, was picking up whispers of gravitational waves every month or so. Now, a new addition to the system is enabling the instruments to detect these ripples in space-time nearly every week. Since the start of LIGO's third operating run in April, a new instrument known as a quantum vacuum squeezer has helped scientists pick out dozens of gravitational wave signals, including one that app ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

PHYSICS NEWS
AFRL demonstrates LVC capabilities during Red Flag-Rescue visit

Heroism, devastation after deadly N. Zealand volcano eruption

Protect poorest from cost of climate reforms: World Bank

Radiation 'hot spots' near Olympic torch relay in Fukushima: Greenpeace

PHYSICS NEWS
Russia postpones Glonass-M launch From Plesetsk over carrier problems

China launches two more BeiDou satellites for GPS system

Russia to launch glass sphere into space before new year to obtain accurate Earth data

Lockheed Martin GPS Spatial Temporal Anti-Jam Receiver System to be integrated in F-35 modernization

PHYSICS NEWS
Narcissism changes during a person's life span

Secrets of orangutan 'language' revealed

Habsburg jaw likely caused by inbreeding, study finds

Scientists slam Chinese CRISPR babies research after manuscript released

PHYSICS NEWS
Israeli fish farmers give peckish pelicans free lunch

Species under increasing threat from climate change: IUCN

Tiger skin, foetuses found in Indonesia poacher case

Phone home Kermit? Keeping tabs on frogs

PHYSICS NEWS
China confirms fourth plague case

Officials in north China tackle plague with poison

Gene Editors Could Find New Use as Rapid Detectors of Pathogenic Threats

Scientists close in on malaria vaccine

PHYSICS NEWS
Hong Kongers await Beijing olive branch after rare calm

Hong Kongers mark half a year of protest with mammoth rally

China says detained Canadians treated in 'civilised way'

Hong Kong leader rules out protest concessions ahead of Beijing visit

PHYSICS NEWS
Four sailors kidnapped by suspected pirates off Togo: navy

PHYSICS NEWS








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.