Medical and Hospital News  
TIME AND SPACE
Quantum experiments designed by machines
by Staff Writers
Vienna, Austria (SPX) Feb 24, 2016


The algorithm Melvin found out that the most simple realization can be asymmetric and therefore counterintuitive. Image courtesy Robert Fickler, Universitat Wien. For a larger version of this image please go here.

Quantum physicist Mario Krenn and his colleagues in the group of Anton Zeilinger from the Faculty of Physics at the University of Vienna and the Austrian Academy of Sciences have developed an algorithm which designs new useful quantum experiments.

As the computer does not rely on human intuition, it finds novel unfamiliar solutions. The research has just been published in the journal Physical Review Letters. The idea was developed when the physicists wanted to create new quantum states in the laboratory, but were unable to conceive of methods to do so.

"After many unsuccessful attempts to come up with an experimental implementation, we came to the conclusion that our intuition about these phenomena seems to be wrong. We realized that in the end we were just trying random arrangements of quantum building blocks. And that is what a computer can do as well - but thousands of times faster", explains Mario Krenn, PhD student in Anton Zeilinger's group and first author research.

After a few hours of calculation, their algorithm - which they call Melvin - found the recipe to the question they were unable to solve, and its structure surprised them. Zeilinger says:

"Suppose I want build an experiment realizing a specific quantum state I am interested in. Then humans intuitively consider setups reflecting the symmetries of the state. Yet Melvin found out that the most simple realization can be asymmetric and therefore counterintuitive. A human would probably never come up with that solution."

The physicists applied the idea to several other questions and got dozens of new and surprising answers. "The solutions are difficult to understand, but we were able to extract some new experimental tricks we have not thought of before. Some of these computer-designed experiments are being built at the moment in our laboratories", says Krenn.

Melvin not only tries random arrangements of experimental components, but also learns from previous successful attempts, which significantly speeds up the discovery rate for more complex solutions. In the future, the authors want to apply their algorithm to even more general questions in quantum physics, and hope it helps to investigate new phenomena in laboratories.

Publication in Physical Review Letters - Mario Krenn, Mehul Malik, Robert Fickler, Radek Lapkiewicz, Anton Zeilinger: Automated Search for new Quantum Experiments, Physical Review Letters, 22 February, 2016


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Vienna
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
A quantum device based on geometry
Chicago IL (SPX) Feb 23, 2016
While a classical bit found in conventional electronics exists only in binary 1 or 0 states, the more resourceful quantum bit, or 'qubit' is represented by a vector, pointing to a simultaneous combination of the 1 and 0 states. To fully implement a qubit, it is necessary to control the direction of this qubit's vector, which is generally done using fine-tuned and noise-isolated procedures. ... read more


TIME AND SPACE
El Faro captain sought route change before sinking

Turkish warplanes enter Greek airspace ahead of NATO migration operation

Australian hospital refuses to return asylum baby to Nauru

Erdogan threatens to send refugees to EU as NATO steps in

TIME AND SPACE
Better, faster tsunami warnings possible with GPS

GPS tracking down to the centimeter

Russia Developing Glonass Satellite And Latest Bird Launched

China to launch nearly 40 Beidou navigation satellites in five years

TIME AND SPACE
Easter Island not destroyed by war, analysis of 'spear points' shows

Modern 'Indiana Jones' on mission to save antiquities

South Africa's Sterkfontein Caves produce 2 new hominin fossils

Light and manganese to discover the source of submerged Roman marble

TIME AND SPACE
Armed groups line up to kill Congo's elephants

Scientists discover new microbes that thrive deep in the earth

Scientists revive 'water bears' that were frozen for 30 years

Big-brained mammals more likely to go extinct: study

TIME AND SPACE
Brazil military fight mosquitoes, flower pot to flower pot

What does turbulence have in common with an epidemic?

New study highlights effectiveness of a herpesvirus CMV-based vaccine against Ebola

Brazil army will go door-to-door in fight against Zika

TIME AND SPACE
Spanish police search branch of China's ICBC bank in money laundering probe

China must release detained activists, rights lawyers: UN

China dismisses 'irresponsible' UN criticism of detentions

Beijing pins Hong Kong riot on "radical separatists"

TIME AND SPACE
Two Mexican marines, suspect killed in shootout

TIME AND SPACE
China's industrial overcapacity damaging global economy: study

US to press G20 to do more for growth

HSBC 2015 results disappoint amid 'seismic' economic shifts

China bank lending surges to record in January









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.