Medical and Hospital News  
CHIP TECH
Quantum light sources pave the way for optical circuits
by Staff Writers
Munich, Germany (SPX) Aug 05, 2019

By bombarding thin molybdenum sulfide layers with helium ions, physicists at the Technical University of Munich (TUM) succeeded in placing light sources in atomically thin material layers with an accuracy of just a few nanometers. The new method allows for a multitude of applications in quantum technologies.

An international team headed up by Alexander Holleitner and Jonathan Finley, physicists at the Technical University of Munich (TUM), has succeeded in placing light sources in atomically thin material layers with an accuracy of just a few nanometers. The new method allows for a multitude of applications in quantum technologies, from quantum sensors and transistors in smartphones through to new encryption technologies for data transmission.

Previous circuits on chips rely on electrons as the information carriers. In the future, photons which transmit information at the speed of light will be able to take on this task in optical circuits. Quantum light sources, which are then connected with quantum fiber optic cables and detectors are needed as basic building blocks for such new chips.

An international team headed up by TUM physicists Alexander Holleitner and Jonathan Finley has now succeeded in creating such quantum light sources in atomically thin material layers and placing them with nanometer accuracy.

First step towards optical quantum computers
"This constitutes a first key step towards optical quantum computers," says Julian Klein, lead author of the study. "Because for future applications the light sources must be coupled with photon circuits, waveguides for example, in order to make light-based quantum calculations possible."

The critical point here is the exact and precisely controllable placement of the light sources. It is possible to create quantum light sources in conventional three-dimensional materials such as diamond or silicon, but they cannot be precisely placed in these materials.

Deterministic defects
The physicists then used a layer of the semiconductor molybdenum disulfide (MoS2) as the starting material, just three atoms thick. They irradiated this with a helium ion beam which they focused on a surface area of less than one nanometer.

In order to generate optically active defects, the desired quantum light sources, molybdenum or sulfur atoms are precisely hammered out of the layer. The imperfections are traps for so-called excitons, electron-hole pairs, which then emit the desired photons.

Technically, the new helium ion microscope at the Walter Schottky Institute's Center for Nanotechnology and Nanomaterials, which can be used to irradiate such material with an unparalleled lateral resolution, was of central importance for this.

On the road to new light sources
Together with theorists at TUM, the Max Planck Society, and the University of Bremen, the team developed a model which also describes the energy states observed at the imperfections in theory.

In the future, the researchers also want to create more complex light source patterns, in lateral two-dimensional lattice structures for example, in order to thus also research multi-exciton phenomena or exotic material properties.

This is the experimental gateway to a world which has long only been described in theory within the context of the so-called Bose-Hubbard model which seeks to account for complex processes in solids.

Quantum sensors, transistors and secure encryption
And there may be progress not only in theory, but also with regard to possible technological developments. Since the light sources always have the same underlying defect in the material, they are theoretically indistinguishable. This allows for applications which are based on the quantum-mechanical principle of entanglement.

"It is possible to integrate our quantum light sources very elegantly into photon circuits," says Klein. "Owing to the high sensitivity, for example, it is possible to build quantum sensors for smartphones and develop extremely secure encryption technologies for data transmission."

Research Report: "Site-selectively generated photon emitters in monolayer MoS2 via local helium ion irradiation"


Related Links
Technical University of Munich (TUM)
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CHIP TECH
Researchers produce electricity by flowing water over extremely thin layers of metal
Chicago IL (SPX) Aug 05, 2019
Scientists from Northwestern University and Caltech have produced electricity by simply flowing water over extremely thin layers of inexpensive metals, including iron, that have oxidized. These films represent an entirely new way of generating electricity and could be used to develop new forms of sustainable power production. The films have a conducting metal nanolayer (10 to 20 nanometers thick) that is insulated with an oxide layer (2 nanometers thick). Current is generated when pulses of rainwa ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Natural disasters cause greater havoc in 2019: Munich Re

Dozens of migrants still stuck on vessel in Italy port

FAA Adopts NASA Aviation Distress Beacon Recommendations

Climate change increasing hurricanes, storms, floods, North Carolina records show

CHIP TECH
An AI technology to reveal the characteristics of animal behavior only from the trajectory

European Galileo satellite navigation system resumes Initial Services

Europe's Galileo GPS system back after six-day outage

Europe's GPS rival Galileo suffers outage

CHIP TECH
Human genetic diversity of South America reveals complex history of Amazonia

How humans and chimpanzees travel towards a goal in rainforests

Working memory in chimpanzees, humans works similarly

Out of Africa and into an archaic human melting pot

CHIP TECH
In French mountains, bear attacks leave shepherds skittish

Plant roots began following gravity 350 million years ago

India's wild tiger population jumps to almost 3,000: census

Vietnam seizes 125 kilos of rhino horn hidden in plaster

CHIP TECH
In eastern DR Congo, influx of Ebola money is source of friction

Avian malaria may explain decline of London's house sparrow

Buzz off: breakthrough technique eradicates mosquitoes

Genomic analysis reveals details of first historically recorded plague pandemic

CHIP TECH
Clashes, travel chaos in Hong Kong as leader warns city on brink

Beijing officials to address Hong Kong unrest

Founder of banned Hong Kong independence party arrested

Trump takes back seat as China bristles over Hong Kong unrest

CHIP TECH
Amid fentanyl crackdown, Mexico risks 'balloon effect'

Spanish and E.Guinea navy rescue 20 crew from pirate hijacking

Brazil's Bolsonaro eases rules for gun enthusiasts

CHIP TECH








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.