Medical and Hospital News  
TIME AND SPACE
Quantum processes control accurately to several attoseconds
by Staff Writers
Moscow, Russia (SPX) Feb 24, 2016


File image.

A team of physicists including Russian researchers succeeded in conducting an experiment in which, for the first time in history, control over ultrafast motion of electrons down to three attoseconds (one attosecond refers to a second as one second refers to the lifetime of the Universe) was proved possible. This fact paves a way to new directions of research that seemed improbable before. The experiment was conducted with the help of the free-electron laser FERMI located at the "Elettra Sincrotrone" research center in Trieste, Italy.

The speed of chemical, physical and biological processes is extremely high, atomic bonds are broken and restored within femtoseconds (one millionth of one billionth of a second). The Egyptian-American chemist Ahmed Zewail was the first to succeed in observing the dynamics of chemical processes, which made him a winner of the 1999 Nobel Prize in Chemistry.

Nevertheless, nature can operate even faster. While atomic motions within a molecule can be measured with femtosecond resolution, the dynamics of electrons, which define the nature of chemical bonds, happens a thousand times faster - within tens and hundreds of attoseconds.

The only tools appropriate for studying such processes are so-called x-ray free-electron lasers. In "conventional" gas, liquid and solid-state lasers, excitation of electrons in the bound atomic state serves as the source of photons. In contrast, free-electron lasers operate with the help of a high-quality electron beam wiggling along a sinusoidal path under the effect of a ray of magnets. During that process electrons lose energy by producing radiation.

X-ray free-electron lasers generate radiation with a unique set of properties: a wavelength in the extreme ultraviolet or soft x-rays, unprecedented luminosity, ultrashort femtosecond pulses, tunable frequency and polarization, and coherence. While the properties of the laser itself did not allow for observations accurate to attoseconds, a way out was found.

In their experiment, scientists irradiated neon atoms with free-electron laser pulses of two frequencies instead of one, and traced the direction of photoelectrons leaving the atom. They used radiation with the fundamental frequency and its second harmonic (with twice the frequency and hence half the wavelength), specifically wavelengths of 63,0 and 31,5 nanometers.

Changing the time delay between the harmonics,the scientists observed the dynamics of the process: they measured changes in the photoelectrons' angular distribution. As the result they managed to overcome the natural obstacles and observed a quantum interference between two channels of atomic photoionization with a precision of three attoseconds (simply speaking, indirect indicators allowed to measure thetime gap electrons left the atom).

'In this experiment we managed to carry out a scheme that allows to distinguish relative phases of two free-electron laser harmonics,' comments one of the authors - Elena Gryzlova, senior researcher, D.V.Skobeltsyn Institute of Nuclear Physics, the Moscow State University.

'There are many methods to eliminate, or vice versa, to distinguish extra frequencies in visible radiation. But in high-frequency ranges like extreme ultraviolet or x-ray all of them are inapplicable, as there are no common mirrors or polarizers. However, the main conclusion we can draw based on this experiment is that control over quantum processes with a precision of several attoseconds is possible at all.'

The contribution of Russian scientists into this work is significant: 'Our colleague, Alexei Grum-Grzhimailo, made first derivations and co-authored the very idea of the experiment,' says Elena Gryzlova. 'Later, together with Prof. Svetlana Strakhova, we succeeded in calculating the scale of that effect, investigating whether it would be detectable at all. We then provided formulas to extract the necessary parameters from the general set of data collected in the experiment.'

The authors of the article state that the 'dichromatic' laser measurements open a new horizon for research in physics of ultrafast processes.

According to Elena Gryzlova, an application for beamtime to conduct similar experiments on FERMI using molecules, i.e., more complicated system than the neon atom, was recently submitted. The team considers researching complex phenomena related to catalyst processes and atmospheric chemistry.

'We expect that this scientific direction will develop further,' Elena says, 'As the problem of quantum control is one of the cornerstones of contemporary fundamental physics.'


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Lomonosov Moscow State University
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
A quantum device based on geometry
Chicago IL (SPX) Feb 23, 2016
While a classical bit found in conventional electronics exists only in binary 1 or 0 states, the more resourceful quantum bit, or 'qubit' is represented by a vector, pointing to a simultaneous combination of the 1 and 0 states. To fully implement a qubit, it is necessary to control the direction of this qubit's vector, which is generally done using fine-tuned and noise-isolated procedures. ... read more


TIME AND SPACE
El Faro captain sought route change before sinking

Turkish warplanes enter Greek airspace ahead of NATO migration operation

Australian hospital refuses to return asylum baby to Nauru

Erdogan threatens to send refugees to EU as NATO steps in

TIME AND SPACE
Better, faster tsunami warnings possible with GPS

GPS tracking down to the centimeter

Russia Developing Glonass Satellite And Latest Bird Launched

China to launch nearly 40 Beidou navigation satellites in five years

TIME AND SPACE
Easter Island not destroyed by war, analysis of 'spear points' shows

Modern 'Indiana Jones' on mission to save antiquities

South Africa's Sterkfontein Caves produce 2 new hominin fossils

Light and manganese to discover the source of submerged Roman marble

TIME AND SPACE
Armed groups line up to kill Congo's elephants

Scientists discover new microbes that thrive deep in the earth

Scientists revive 'water bears' that were frozen for 30 years

Big-brained mammals more likely to go extinct: study

TIME AND SPACE
Brazil military fight mosquitoes, flower pot to flower pot

What does turbulence have in common with an epidemic?

New study highlights effectiveness of a herpesvirus CMV-based vaccine against Ebola

Brazil army will go door-to-door in fight against Zika

TIME AND SPACE
Spanish police search branch of China's ICBC bank in money laundering probe

China must release detained activists, rights lawyers: UN

China dismisses 'irresponsible' UN criticism of detentions

Beijing pins Hong Kong riot on "radical separatists"

TIME AND SPACE
Two Mexican marines, suspect killed in shootout

TIME AND SPACE
China's industrial overcapacity damaging global economy: study

US to press G20 to do more for growth

HSBC 2015 results disappoint amid 'seismic' economic shifts

China bank lending surges to record in January









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.