Medical and Hospital News  
CHIP TECH
Quantum race accelerates development of silicon quantum chip
by Staff Writers
Delft, Netherlands (SPX) Feb 05, 2018

The quantum computer of the future will be able to carry out computations far beyond the capacity of today's computers. Researchers from left to right: Nodar Samkharadze, Lieven Vandersypen and Guoji Zheng.

The worldwide race to create more, better and reliable quantum processors is progressing fast, as a team of TU Delft scientists led by Professor Vandersypen has realised yet again.

In a neck-and-neck race with their competitors, they showed that quantum information of an electron spin can be transported to a photon, in a silicon quantum chip. This is important in order to connect quantum bits across the chip and allowing to scale up to large numbers of qubits. Their work was published in the journal Science.

The quantum computer of the future will be able to carry out computations far beyond the capacity of today's computers. Quantum superpositions and entanglement of quantum bits (qubits) make it possible to perform parallel computations. Scientists and companies worldwide are engaged in creating increasingly better quantum chips with more and more quantum bits. QuTech in Delft is working hard on several types of quantum chips.

The core of the quantum chips is made of silicon. "This is a material that we are very familiar with," explains Professor Lieven Vandersypen of QuTech and the Kavli Institute of Nanoscience Delft, "Silicon is widely used in transistors and so can be found in all electronic devices."

But silicon is also a very promising material for quantum technology. PhD candidate Guoji Zheng: "We can use electrical fields to capture single electrons in silicon for use as quantum bits (qubits). This is an attractive material as it ensures the information in the qubit can be stored for a long time."

Large systems
Making useful computations requires large numbers of qubits and it is this upscaling to large numbers that is providing a challenge worldwide. "To use a lot of qubits at the same time, they need to be connected to each other; there needs to be good communication", explains researcher Nodar Samkharadze.

At present the electrons that are captured as qubits in silicon can only make direct contact with their immediate neighbours. Nodar: "That makes it tricky to scale up to large numbers of qubits."

Neck-and-neck race
Other quantum systems use photons for long-distance interactions. For years, this was also a major goal for silicon. Only in recent years have various scientists made progress on this.

The Delft scientists have now shown that a single electron spin and a single photon can be coupled on a silicon chip. This coupling makes it possible in principle to transfer quantum information between a spin and a photon. Guoji Zheng: "This is important to connect distant quantum bits on a silicon chip, thereby paving the way to upscaling quantum bits on silicon chips."

On to the next step
Vandersypen is proud of his team: "My team achieved this result in a relatively short time and under great pressure from worldwide competition." It is a true Delft breakthrough: "The substrate is made in Delft, the chip created in the Delft cleanrooms, and all measurements carried out at QuTech," adds Nodar Samkharadze. The scientists are now working hard on the next steps. Vandersypen: "The goal now is to transfer the information via a photon from on electron spin to another."


Related Links
Delft University of Technology
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CHIP TECH
TU Wien develops new semiconductor processing technology
Vienna, Austria (SPX) Feb 05, 2018
Extremely fine porous structures with tiny holes - resembling a kind of sponge at nano level - can be generated in semiconductors. This opens up new possibilities for the realization of tiny sensors or unusual optical and electronic components. There have already been experiments in this area with porous structures made from silicon. Now, researchers at TU Wien have succeeded in developing a method for the controlled manufacture of porous silicon carbide. Silicon carbide has significant advantages ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Stressed-out Dhaka to get 'Anger Management Park'

Mammals and birds could have best shot at surviving climate change

As Paris mops up, warning of more floods in Europe's future

US 'cautiously optimistic' on Philippine drug war rights record

CHIP TECH
Pentagon probes fitness-app use after map shows sensitive sites

China sends twin BeiDou-3 navigation satellites into space

18 satellites in exactEarth's real-time constellation now in service

'Quantum radio' may aid communications and mapping indoors, underground and underwater

CHIP TECH
Modern human brain organization emerged only recently

Evolving sets of gene regulators explain some of our differences from other primates

First came Homo sapiens, then came the modern brain

Fossil found in Israel suggests Homo sapiens left Africa 180,000 years ago

CHIP TECH
Humans get in the way of mammal movement

Bacteria under your feet

Breakthrough study shows how plants sense the world

How did we evolve to live longer?

CHIP TECH
Plague outbreak in Madagascar revived dread of a killer

'Mutant flu' could lead to more effective vaccine: study

Scientists find new clues about 'wave after wave' of germs that killed the Aztecs

TSRI scientists discover workings of first promising Marburg virus treatment

CHIP TECH
Hong Kong democracy candidate cleared to run in fraught vote

China rights lawyer charged with 'inciting subversion'

Ex-governor urges British PM to speak out on Hong Kong in China visit

EU envoy urges China to release Swedish book publisher

CHIP TECH
Thai navy says 11 million pill haul a record from Laos

CHIP TECH








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.