Medical and Hospital News  
CHIP TECH
Quantum reservoir for microwaves
by Staff Writers
Lausanne, Switzerland (SPX) May 18, 2017


Photograph of the chip used in the experiment to couple a microwave cavity to a micrometer-size drum (the sharp purple pencil tip is placed as a scale). Inset shows a scanning electron micrograph of the drum. The top membrane of the drum is suspended only 50nm (1/2000th of the diameter of hair) above a metal plate. This is then used to manipulate and amplify microwaves in the quantum regime. Image courtesy N. R. Bernier and L. D. Toth (EPFL).

In a recent experiment at EPFL, a microwave resonator, a circuit that supports electric signals oscillating at a resonance frequency, is coupled to the vibrations of a metallic micro-drum.

By actively cooling the mechanical motion close to the lowest energy allowed by quantum mechanics, the micro-drum can be turned into a quantum reservoir - an environment that can shape the states of the microwaves. The findings are published as an advanced publication in Nature Physics.

Laszlo Daniel Toth, Nathan Bernier, and Dr Alexey Feofanov led the research effort in Tobias Kippenberg's Laboratory of Photonics and Quantum Measurements at EPFL, with support from Dr Andreas Nunnenkamp, a theorist at the University of Cambridge, UK.

Microwaves are electromagnetic waves, just like visible light, but with a frequency that is four orders of magnitude smaller. Microwaves form the backbone of several everyday technologies, from microwave ovens and cellular phones to satellite communication, and have recently gained further importance in manipulating quantum information in superconducting circuits - one of the most promising candidates to realize future quantum computers.

The micro-drum, only 30 microns in diameter, 100 nanometers thick and fabricated in the Center of MicroNanotechnology (CMi) at EPFL, constitutes the top plate of a capacitor in a superconducting microwave resonator.

The drum's position modulates the resonator's resonance frequency and, conversely, a voltage across the capacitor exerts a force on the micro-drum. Through this bidirectional interaction, energy can be exchanged between mechanical vibrations and the microwave oscillations in the superconducting circuit.

In the experiment, the micro-drum is first cooled close to its lowest energy quantum level by a suitably tuned microwave tone. Every microwave photon (a quantum of light) carries away the energy of a phonon (a quantum of mechanical motion) such that the mechanical energy is reduced. This cooling process increases the dissipation and turns the micro-drum into a dissipative reservoir for the microwave resonator.

By tuning the interactions between the cavity and the cooled micro-drum, which is now an environment for the microwaves, the cavity can be turned into a microwave amplifier. The most interesting aspect of this amplification process is the added noise, that is, how much random, unwanted fluctuations are added to the amplified signal.

Albeit counter-intuitive, quantum mechanics dictates that this added noise cannot be suppressed completely, even in principle. The amplifier realized in the EPFL experiment operates very close to this limit, therefore it is as "quiet" as it can be. Interestingly, in a different regime, the micro-drum turns the microwave resonator into a maser (or microwave laser).

"There has been a lot of research focus on bringing mechanical oscillators into the quantum regime in the past few years." says Dr. Alexey Feofanov, postdoctoral researcher on the project. "However, our experiment is one of the first which actually shows and harnesses their capabilities for future quantum technologies."

Looking ahead, this experiment enables novel phenomena in cavity optomechanical systems like noiseless microwave routing or microwave entanglement. Generally, it proves that mechanical oscillators can be a useful resource in the rapidly growing field of quantum science and engineering.

Future activities on the emerging research possibilities created by this work will be supported by two recently started EC Horizon 2020 projects: Hybrid Optomechanical Technologies (HOT) and Optomechanical Technologies (OMT), both coordinated at EPFL.

L. D. Toth, N. R. Bernier, A. Nunnenkamp, A. K. Feofanov, T. J. Kippenberg. A dissipative quantum reservoir for microwave light using a mechanical oscillator. Nature Physics 15 May 2017. DOI: 10.1038/nphys4121

CHIP TECH
Internet of things made simple: One sensor package does work of many
Pittsburgh PA (SPX) May 17, 2017
Ubiquitous sensors seem almost synonymous with the internet of things (IoT), but some Carnegie Mellon University researchers say ubiquitous sensing - with a single, general purpose sensor for each room - may be better. The plug-in sensor package they've developed monitors multiple phenomena in a room, including things such as sounds, vibration, light, heat, electromagnetic noise and temper ... read more

Related Links
Ecole Polytechnique Federale de Lausanne
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Countries most affected by weather disasters do not spend more on weather services

UN braces for up to 200,000 Iraqis to flee Mosul

Trump budget calls for deep cuts to social safety net

Disaster risk management: Science helps save lives

CHIP TECH
2 SOPS says goodbye to GPS satellite

Researchers working toward indoor location detection

Galileo's search and rescue service in the spotlight

Russia inaugurates GPS-type satellite station in Nicaragua

CHIP TECH
Portions of human skeletal structure were established millions of years earlier than previously thought,

Study reveals architecture of the 'second brain,' the enteric nervous system

'Moral enhancement' technologies are neither feasible nor wise

Adolescent orangoutan breastfeed for eight years

CHIP TECH
How do blind cavefish find their way? The answer could be in their bones.

Genetic mutation trade-offs lead to parallel evolution

Why the fate of a tiny Rio Grande fish is so important

Young birds migrating to Africa dispersed by winds, study shows

CHIP TECH
Stars dig deep at charity Cannes AIDS gala

'Freak': meet Cuba's last self-infected HIV punk rebel

Hundreds of Chinese students hospitalised for norovirus: Xinhua

Can crab shells provide a 'green' solution to malaria?

CHIP TECH
China gasps at airy speech by grad student in US

Former top Chinese cop executed for murder

Hong Kong independence duo plead not guilty over parliament chaos

Jailed Chinese lawyer force-fed medication, wife says

CHIP TECH
UN counter-drug official kidnapped in Colombia: officials

Indian, Chinese navies rescue ship hijacked by Somali pirates

CHIP TECH








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.