Free Newsletters - Space - Defense - Environment - Energy
..
. Medical and Hospital News .




TIME AND SPACE
Quantum state world record smashed
by Staff Writers
London, UK (SPX) Nov 19, 2013


File image.

A normally fragile quantum state has been shown to survive at room temperature for a world record 39 minutes, overcoming a key barrier towards building ultrafast quantum computers. The research, published in the journal Science, was led by Mike Thewalt (Simon Fraser University, Canada), with involvement from researchers at UCL and Oxford University, and material provided from collaborating institutes in Berlin.

In conventional computers data is stored as a string of 1s and 0s. In the experiment quantum bits of information, known as qubits, were put into a state of superposition in which they can be both 1s and 0 at the same time - enabling them to perform multiple calculations simultaneously. This is normally only possible at very low temperatures.

In the experiment the team used a system in which silicon is 'doped' with phosphorus atoms, and information is encoded in the phosphorus atoms' nuclei. Raising the temperature from -269 C to 25 C, the scientists discovered that the superposition states survived at this balmy temperature for 39 minutes. Outside of silicon the previous record for such a state's survival at room temperature was around two seconds.

"For a few years we've known that the nuclear spins for dopant atoms in silicon can be used as a long-lived memory for electron spins, a bit like a computer's hard disk," says UCL's John Morton (London Centre for Nanotechnology), a co-author of the research. "This work shows that removing the electron away from the dopant atom allows the information in the nuclear spin to live even longer - as long as three hours."

The team even found that they could manipulate the qubits as the temperature of the system rose, and that they were robust enough for this information to survive being 'refrozen' (the optical technique used to read the qubits only works at very low temperatures). 39 minutes may not sound particularly long, but since it only takes a tiny fraction of a second to run quantum computations by flipping the spin of phosphorus ions (electrically charged phosphorus atoms), many millions of operations could be carried out before a system like this decays.

"This opens up the possibility of truly long-term coherent information storage at room temperature," said Mike Thewalt (Simon Fraser University), the lead researcher in this study.

The team began with a sliver of silicon doped with small amounts of other elements, including phosphorus. They then encoded quantum information in the nuclei of the phosphorus atoms: each nucleus has an intrinsic quantum property called 'spin', which acts like a tiny bar magnet when placed in a magnetic field. Spins can be manipulated to point up (0), down (1), or any angle in between, representing a superposition of the two other states.

The team prepared their sample at -269 C, just 4 degrees above absolute zero, and placed it in a magnetic field. They used additional magnetic field pulses to tilt the direction of the nuclear spin and create the superposition states.

When the sample was held at this cryogenic temperature, the nuclear spins of about 37 per cent of the ions - a typical benchmark to measure quantum coherence - remained in their superposition state for three hours. The same fraction survived for 39 minutes when the temperature of the system was raised to 25 C.

"These lifetimes are at least ten times longer than those measured in previous experiments," says Stephanie Simmons (University of Oxford), who collaborated in the study. "We've managed to identify a system that seems to have basically no noise. They're high-performance qubits."

There is still some work ahead before the team can carry out large-scale quantum computations. The nuclear spins of the 10 billion or so phosphorus ions used in this experiment were all placed in the same quantum state. To run calculations, however, physicists will need to place different qubits in different states.

The technology also has potential applications outside of computing.

"Quantum mechanics tells us that is physically impossible to make a true copy of a quantum state - which has led to proposals for fundamentally unforgeable banknotes based on keeping quantum systems in superposition states," says John Morton. "Although quantum money remains a long way off, if these record-breaking coherence times of nuclear spins in silicon could be extended further, they could find use in ultra-secure authentication devices."

Superposition
In quantum physics, unlike classical physics, objects exist in all of their possible states simultaneously, but collapse into one of these states the instant they are measured. This is what lies behind the famous paradox of Schrodinger's Cat. A cat is locked in a box alongside a radioactive source, a detector and a flask of poison. If the radioactive atom decays, the detector triggers a hammer to break the flask and the cat dies. If the atom does not decay, the cat remains alive. Since radioactive decay of a single atom is a probabilistic event, the atom has both decayed and not decayed until the moment it is measured. And therefore, until you check whether or not the cat has been poisoned, it remains both dead and alive at the same time. Quantum phenomena the scale of a cat have never been observed, but on quantum scales, this kind of behaviour is common.

Qubit
In computing, a bit is the smallest unit of information, 0 or 1. In quantum computing, a quantum bit (or qubit) is the equivalent, and is physically encoded in quantum phenomena such as the spin of an atomic nucleus. However, thanks to quantum superposition, a qubit can be in a superposition of both 0 and 1 at the same time.

.


Related Links
University College London
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TIME AND SPACE
High-energy physicists predict new family of four-quark objects
Manoa HI (SPX) Nov 14, 2013
An international team of high-energy physicists says the discovery of an electrically charged subatomic particle called Zc(4020) is a sign that they have begun to unveil a whole new family of four-quark objects. The Beijing Spectrometer (BESIII) collaboration, which includes scientists from the University of Hawaii at Manoa, previously announced the discovery of a mysterious four-quark par ... read more


TIME AND SPACE
'Help Us': Isolated typhoon victims clamour for food

Japan sending almost 1,200 troops to typhoon-hit Philippines

Law and order prevailing in Philippine typhoon chaos

Aquino asserts control over typhoon relief effort

TIME AND SPACE
Russia to enforce GLONASS Over GPS

How pigeons may smell their way home

UK conservationists using location-based system ManagePlaces

A Better Way to Track Your Every Move

TIME AND SPACE
China one-child law change small but crucial: experts

Dogs likely originated in Europe more than 18,000 years ago

China one-child law change small but crucial: experts

China eases one child rule, ends re-education in reform package

TIME AND SPACE
Nature's Glowing Slime: Scientists Peek into Hidden Sea Worm's Light

US destroys six-ton ivory stockpile

Changing the conversation -- polymers disrupt bacterial communication

US posts $1 mln reward targeting Laos poaching ring

TIME AND SPACE
New malaria vaccines roadmap targets next generation products by 2030

Indonesian woman dies of bird flu: health ministry

Technology helps Nigeria's fight against polio

How zinc starves lethal bacteria to stop infection

TIME AND SPACE
End to China labour camps cheered -- but what next?

China reform plan impresses, but analysts watch effects

Rights activists cautious on China reforms

China rebukes former H.K. leader over democracy remarks

TIME AND SPACE
Spain jails six Somalis for piracy

Pirates kidnap two American sailors off Nigeria

Seaman Guard owner to fight arrest of ship's crew in India

Somali pirates on trial for seizing French yacht

TIME AND SPACE
China unveils reforms to ease grip on economy

EU disciplines members over bloated budget deficits

China Communist Party vows to deepen reforms at key meeting

Walker's World: Are the Germans right?




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement