Medical and Hospital News  
ENERGY TECH
Qubits as valves: Controlling quantum heat engines
by Staff Writers
Helsinki, Finland (SPX) Jul 16, 2018

With the valve, researchers can control the heat moving through the qubit.

Researchers from Aalto University are designing nano-sized quantum heat engines to explore whether they may be able to outperform classical heat engines in terms of power and efficiency.

In their paper, published in Nature Physics, the group led by Professor Jukka Pekola presents a way to solve a problem in how quantum systems interact and exchange energy with their macroscopic surroundings, and within themselves. The group strives to treat quantum information and thermodynamics on the same footing in their research.

'We have realised a miniature heat valve in a quantum system composed of an artificial atom, a superconducting qubit--the basic building block of both quantum computing and quantum heat engines,' explains Professor Pekola.

While in quantum computers the qubit has to be decoupled from the noisy external world to sustain a fragile quantum state, in quantum heat engines, the system needs to be coupled to its dissipative surroundings, to heat baths.

A particularly puzzling problem is the process of thermalisation when connecting external heat sources or 'thermal baths' to a coherent quantum system or qubit. Ultimately, heat is exchanged between these systems through the emission of photons, one by one.

'Using a qubit controlled by a magnetic field as a "valve", we can either block or release the flow of photons carrying the heat through the qubit between two "heat baths" formed of metallic resistors,' explains Dr. Alberto Ronzani, the lead author of the paper.

A quantum heat engine transforms heat into useful work or, in reverse, operates as a refrigerator.

'Our work demonstrates how a heat valve can work in certain cases. We aim to understand, combining experimental and theoretical efforts, how quantum refrigerators and heat engines work, but have yet to come up with a general picture of the cross-over between non-dissipative and fully dissipative systems. That's a challenge for the future,' says Pekola.

In addition to Pekola and Ronzani, the team consists of doctoral students Bayan Karimi and Jorden Senior, Dr. Joonas Peltonen and additional collaborators Yu-Cheng Chang and Dr. ChiiDong Chen from the National Taiwan University and the Institute of Physics, Academia Sinica, in Taiwan, Republic of China, with experimental contributions to this work.

Jukka Pekola leads the Quantum Technology Finland - Centre of Excellence funded by the Academy of Finland. The experimental research was carried out at the OtaNano national research infrastructure for micro, nano and quantum technologies in Finland.

Research paper


Related Links
Aalto University
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Buildings as power stations - data shows they work: They generate more energy than they consume
Swansea UK (SPX) Jul 04, 2018
The UK's first energy-positive classroom, designed with research expertise from Swansea University, generated more than one and a half times the energy it consumed, according to data from its first year of operation, the team has revealed. The findings were announced as the researchers launched the next phase of their research, gathering data and evidence on an office building, constructed using similar methods. Buildings currently account for around 40% of UK energy consumption. This new bu ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Stateless teen praised as 'gem' in Thai cave ordeal

Facial recognition was key in identifying US shooting suspect

21 dead, many more bodies seen inside sunken Thai tourist boat

Artificial intelligence accurately predicts distribution of radioactive fallout

ENERGY TECH
Next four Galileo satellites fuelled for launch

NASA Tests Solar Sail for CubeSat that Will Study Near-Earth Asteroids

India's Domestic SatNav System Hits Major Roadblock Ahead of Commercial Release

Russia launches Soyuz-21b with Glonass-M navigation satellite

ENERGY TECH
Ancient DNA reveals prehistoric population of Southeast Asia

Chimpanzees start using a new tool-use gesture during an alpha male take over

Ukraine's Roma under attack in wave of hate crimes

Lithuanians seek identity in their pagan roots

ENERGY TECH
Frigid polar oceans, not balmy coral reefs, are species-formation hot spots

Six sovereign wealth funds sign climate pledge

America's first dogs came from Siberia, disappeared after Europeans arrived

Fair game? Lions eat poachers on S.Africa reserve

ENERGY TECH
Help NASA Track and Predict Mosquito-Borne Disease Outbreaks

Spot a rat? Real-time map aims to plot Paris sightings

US fears of 'mystery weapon' revived by new China diplomat cases

Dialing up the body's defenses against public health threats

ENERGY TECH
Beijing eyes UNESCO status for Mao tomb, Tiananmen Square

Thousands march in Hong Kong as restrictions grow

US plans beefed up scrutiny of Chinese investments: Bloomberg

Chinese police break up protest of military veterans

ENERGY TECH
Three Mexican soldiers killed in ambush

US targets Chinese fentanyl 'kingpin' with sanctions

Singaporean guilty of sophisticated exam cheating plot

ENERGY TECH








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.