Medical and Hospital News  
TECH SPACE
Reaching new heights in laser-accelerated ion energy
by Staff Writers
Strathclyde UK (SPX) Mar 06, 2018

File image.

A laser-driven ion acceleration scheme, developed in research led at the University of Strathclyde, could lead to compact ion sources for established and innovative applications in science, medicine and industry.

The acceleration of protons to energies in the 100 mega-electron-volts range was achieved by exciting a hybrid ion acceleration scheme in an ultrathin foil target irradiated by an intense laser pulse.

The findings of the research could have important implications for advancing smaller, cheaper, laser-driven ion accelerators and their many potential applications. The study has been published in the journal Nature Communications.

Professor Paul McKenna, of Strathclyde's Department of Physics, leads the project. He said: "Laser-driven accelerators have transformative potential, due to their compact nature and the unique properties of the beams of particles and radiation produced.

"A number of the promising applications of laser-accelerated ions require the ion energies to be increased. Our demonstration of high energy ion acceleration driven by a hybrid acceleration mechanism opens up a potential new route to enhancing and controlling laser-driven ion sources."

Particle accelerators have had a profound impact on science and society. They are the basis of innovative approaches to cancer treatment, are invaluable tools in materials science and biology, and are drivers for high energy physics experiments, such as those that confirmed the existence of the Higgs boson. Charged particles are conventionally accelerated in electric fields produced in radiofrequency cavities. The field strength is limited by electrical breakdown, which means that large structures are required to accelerate particles to high energies.

Over the past decade, high power lasers have emerged as a novel driver of potentially compact sources of high energy electrons and ions. Focusing the laser light into plasma produces extremely high electric fields and thus the particle acceleration occurs over a short length - typically, about 1000 times shorter than a radiofrequency cavity accelerator for the same particle energy.

Professor McKenna said: "One of the main challenges in accelerating ions using intense lasers is that the ultrafast processes occurring over the short duration of the laser pulse can make it difficult to optimise an individual acceleration mechanism. However, as shown in our research, this can also give way to the development of hybrid schemes involving two or more acceleration mechanisms, which can enable additional degrees of control on the final ion beam properties."

Research paper


Related Links
University of Strathclyde
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
Tricking photons leads to first-of-its-kind laser breakthrough
Orlando FL (SPX) Feb 15, 2018
A team of optics researchers from the University of Central Florida has demonstrated the first-ever nonmagnetic topological insulator laser, a finding that has the potential to substantially improve the efficiency, beam quality, and resilience of semiconductor laser arrays. These results are presented in two research papers, one describing the theory of topological lasers and the other experiments, published in Science. The project, led by Professors Mercedeh Khajavikhan and Demetrios Christ ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
At the UN, a diplomatic dance decides the fate of nations

New evidence of nuclear fuel releases found at Fukushima

Venezuela's woes spread to zoos as animals feed on each other

Mobile phones help transform disaster relief

TECH SPACE
Why Russia is one step ahead of US Army's plans for future GPS

Europe claims 100 million users for Galileo satnav system

Airbus selected by ESA for EGNOS V3 program

Pentagon probes fitness-app use after map shows sensitive sites

TECH SPACE
Capturing brain signals with soft electronics

Scientists find world's oldest figural tattoos on Egyptian mummies

Seeing the brain's electrical activity

Buried at the stake: Underwater burial site yields skulls on poles

TECH SPACE
Hummingbirds make cricket sounds at frequencies outside avian hearing range

Shipments of protected African species to Asia soar: study

Endangered Sumatran tiger disemboweled, hung up in Indonesia

India's endangered lion population increases to 600

TECH SPACE
DARPA Names Researchers Working to Halt Outbreaks in 60 Days or Less

China confirms first human case of H7N4 bird flu

UV light can kill airborne flu virus, study finds

Playing 20 Questions with Bacteria to Distinguish Harmless Organisms from Pathogens

TECH SPACE
China signals hardened stance on Hong Kong, Taiwan

US journalists fear China detained their families

Historic meeting lauds lifetime power for Xi

Tibetans greet new year with giant Buddhas, dancing and lamb carcasses

TECH SPACE
Off West Africa, navies team up in fight against piracy

India seeks custody of fugitive arrested in Hong Kong

Vietnam cops seize $2.5 mn heroin in China border drug bust

The roots of Italian mafia lie in the lemon industry, new research suggests

TECH SPACE








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.