Medical and Hospital News  
FARM NEWS
Reduced soil tilling helps both soils and yields
by Staff Writers
Stanford CA (SPX) Dec 09, 2019

stock image

Agriculture degrades over 24 million acres of fertile soil every year, raising concerns about meeting the rising global demand for food. But a simple farming practice born from the 1930's Dust Bowl could provide a solution, according to new Stanford research. The study, published Dec. 6 in Environmental Research Letters, shows that Midwest farmers who reduced how much they overturned the soil - known as tilling - increased corn and soybean yields while also nurturing healthier soils and lowering production costs.

"Reduced tillage is a win-win for agriculture across the Corn Belt," said study lead author Jillian Deines, a postdoctoral scholar at Stanford's Center on Food Security and the Environment. "Worries that it can hurt crop yields have prevented some farmers from switching practices, but we found it typically leads to increased yields."

The U.S. - the largest producer of corn and soybeans worldwide - grows a majority of these two crops in the Midwest. Farmers plucked about 367 million metric tons of corn and 108 million metric tons of soybeans from American soil this past growing season, providing key food, oil, feedstock, ethanol and export value.

Monitoring farming from space
Farmers generally till the soil prior to planting corn or soybeans - a practice known to control weeds, mix nutrients, break up compacted dirt and ultimately increase food production over the short term. However, over time this method degrades soil. A 2015 report from the Food and Agriculture Organization of the United Nations found that in the past 40 years the world has lost a third of food-producing land to diminished soil. The demise of once fertile land poses a serious challenge for food production, especially with mounting pressures on agriculture to feed a growing global population.

In contrast, reduced tillage - also known as conservation tillage - promotes healthier soil management, reduces erosion and runoff and improves water retention and drainage. It involves leaving the previous year's crop residue (such as corn stalks) on the ground when planting the next crop, with little or no mechanical tillage.

The practice is used globally on over 370 million acres, mostly in South America, Oceania and North America. However, many farmers fear the method could reduce yields and profits. Past studies of yield effects have been limited to local experiments, often at research stations, that don't fully reflect production-scale practices.

The Stanford team turned to machine learning and satellite datasets to address this knowledge gap. First, they identified areas of reduced and conventional tilling from previously published data outlining annual U.S. practices for 2005 to 2016. Using satellite-based crop yield models - which take into account variables such as climate and crop life-cycles - they also reviewed corn and soybean yields during this time.

To quantify the impact of reduced tillage on crop yields, the researchers trained a computer model to compare changes in yields based on tillage practice. They also recorded elements such as soil type and weather to help determine which conditions had a larger influence on harvests.

Improved yields
The researchers calculated corn yields improved an average of 3.3 percent and soybeans by 0.74 percent across fields managed with long-term conservation tillage practices in the nine states sampled. Yields from the additional tonnage rank in the top 15 worldwide for both crops. For corn, this totals approximately 11 million additional metric tons matching the 2018 country output of South Africa, Indonesia, Russia or Nigeria. For soybeans, the added 800,000 metric tons ranks in between Indonesia and South Africa's country totals.

Some areas experienced up to an 8.1 percent increase for corn and 5.8 percent for soybeans. In other fields, negative yields of 1.3 percent for corn and 4.7 for soybeans occurred. Water within the soil and seasonal temperatures were the most influential factors in yield differences, especially in drier, warmer regions. Wet conditions were also found favorable to crops except during the early season where water-logged soils benefit from conventional tillage that in turn dries and aerates.

"Figuring out when and where reduced tillage works best could help maximize the benefits of the technology and guide farmers into the future," said study senior author David Lobell, a professor of Earth system science in the School of Earth, Energy and Environmental Sciences and the Gloria and Richard Kushel Director of the Center on Food Security and the Environment.

It takes time to see the benefits from reduced tillage, as it works best under continuous implementation. According to the researchers' calculations, corn farmers won't see the full benefits for the first 11 years, and soybeans take twice as long for full yields to materialize.

However, the approach also results in lower costs due to reduced need for labor, fuel and farming equipment while also sustaining fertile lands for continuous food production. The study does show a small positive gain even during the first year of implementation, with higher gains accruing over time as soil health improves. According to a 2017 Agricultural Censuses report, farmers appear to be getting on board with the long-term investment and close to 35 percent of cropland in the U.S. is now managed with reduced tillage.

"One of the big challenges in agriculture is achieving the best crop yields today without comprising future production. This research demonstrates that reduced tillage can be a solution for long-term crop productivity," Deines said.


Related Links
Stanford University
Farming Today - Suppliers and Technology


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


FARM NEWS
Yeast study reveals the benefits of gene amplification
Washington (UPI) Dec 3, 2019
Thanks to a new study of satellite DNA and its formation in yeast cells, scientists are gaining insight into the benefits and pitfalls of genome amplification. To ward off environmental stress, living organisms accumulate extra copies of beneficial genes. The phenomenon is often referred to as gene, or genome, amplification, and it is implicated in both aging and the development of diseases like cancer. To better understand the relationship between gene amplification, environmental stres ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

FARM NEWS
France cancels boat offer to Libya under NGO pressure

In nations rich and poor, climate-related disasters on the uptick

NASA develops second-generation search and rescue beacon technology

Radiation 'hot spots' near Olympic torch relay in Fukushima: Greenpeace

FARM NEWS
China launches two more BeiDou satellites for GPS system

Russia to launch glass sphere into space before new year to obtain accurate Earth data

Lockheed Martin GPS Spatial Temporal Anti-Jam Receiver System to be integrated in F-35 modernization

GPS III Ground System Operations Contingency Program Nearing Operational Acceptance

FARM NEWS
Habsburg jaw likely caused by inbreeding, study finds

Scientists slam Chinese CRISPR babies research after manuscript released

Neanderthal extinction may have occurred without environmental pressure or modern humans

Neuroscientists build model to identify internal brain states

FARM NEWS
As the planet warms, birds are shrinking

New fossils reveal how mammals became good listeners

Sumatran tiger kills farmer in Indonesia

UN chief says humanity's 'war against nature' must stop

FARM NEWS
China confirms fourth plague case

Officials in north China tackle plague with poison

Gene Editors Could Find New Use as Rapid Detectors of Pathogenic Threats

Scientists close in on malaria vaccine

FARM NEWS
Six months of sacrifice: Hong Kong's protesters take stock

Virtual boyfriends a match for China's single women

China's single women seek sperm donors overseas

US House passes Uighur bill urging sanctions on Chinese officials

FARM NEWS
Four sailors kidnapped by suspected pirates off Togo: navy

FARM NEWS








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.