Medical and Hospital News  
CHIP TECH
Reducing the carbon footprint of artificial intelligence
by Rob Matheson | MIT News
Boston MA (SPX) Apr 24, 2020

MIT researchers have developed a new automated AI system with improved computational efficiency and a much smaller carbon footprint. The researchers' system trains one large neural network comprising many pretrained subnetworks of different sizes that can be tailored to diverse hardware platforms without retraining.

Artificial intelligence has become a focus of certain ethical concerns, but it also has some major sustainability issues. Last June, researchers at the University of Massachusetts at Amherst released a startling report estimating that the amount of power required for training and searching a certain neural network architecture involves the emissions of roughly 626,000 pounds of carbon dioxide. That's equivalent to nearly five times the lifetime emissions of the average U.S. car, including its manufacturing.

This issue gets even more severe in the model deployment phase, where deep neural networks need to be deployed on diverse hardware platforms, each with different properties and computational resources.

MIT researchers have developed a new automated AI system for training and running certain neural networks. Results indicate that, by improving the computational efficiency of the system in some key ways, the system can cut down the pounds of carbon emissions involved - in some cases, down to low triple digits.

The researchers' system, which they call a once-for-all network, trains one large neural network comprising many pretrained subnetworks of different sizes that can be tailored to diverse hardware platforms without retraining. This dramatically reduces the energy usually required to train each specialized neural network for new platforms - which can include billions of internet of things (IoT) devices.

Using the system to train a computer-vision model, they estimated that the process required roughly 1/1,300 the carbon emissions compared to today's state-of-the-art neural architecture search approaches, while reducing the inference time by 1.5-2.6 times.

"The aim is smaller, greener neural networks," says Song Han, an assistant professor in the Department of Electrical Engineering and Computer Science. "Searching efficient neural network architectures has until now had a huge carbon footprint. But we reduced that footprint by orders of magnitude with these new methods."

The work was carried out on Satori, an efficient computing cluster donated to MIT by IBM that is capable of performing 2 quadrillion calculations per second. The paper is being presented next week at the International Conference on Learning Representations. Joining Han on the paper are four undergraduate and graduate students from EECS, MIT-IBM Watson AI Lab, and Shanghai Jiao Tong University.

Creating a "once-for-all" network
The researchers built the system on a recent AI advance called AutoML (for automatic machine learning), which eliminates manual network design. Neural networks automatically search massive design spaces for network architectures tailored, for instance, to specific hardware platforms. But there's still a training efficiency issue: Each model has to be selected then trained from scratch for its platform architecture.

"How do we train all those networks efficiently for such a broad spectrum of devices - from a $10 IoT device to a $600 smartphone? Given the diversity of IoT devices, the computation cost of neural architecture search will explode," Han says.

The researchers invented an AutoML system that trains only a single, large "once-for-all" (OFA) network that serves as a "mother" network, nesting an extremely high number of subnetworks that are sparsely activated from the mother network. OFA shares all its learned weights with all subnetworks - meaning they come essentially pretrained. Thus, each subnetwork can operate independently at inference time without retraining.

The team trained an OFA convolutional neural network (CNN) - commonly used for image-processing tasks - with versatile architectural configurations, including different numbers of layers and "neurons," diverse filter sizes, and diverse input image resolutions. Given a specific platform, the system uses the OFA as the search space to find the best subnetwork based on the accuracy and latency tradeoffs that correlate to the platform's power and speed limits.

For an IoT device, for instance, the system will find a smaller subnetwork. For smartphones, it will select larger subnetworks, but with different structures depending on individual battery lifetimes and computation resources. OFA decouples model training and architecture search, and spreads the one-time training cost across many inference hardware platforms and resource constraints.

This relies on a "progressive shrinking" algorithm that efficiently trains the OFA network to support all of the subnetworks simultaneously. It starts with training the full network with the maximum size, then progressively shrinks the sizes of the network to include smaller subnetworks.

Smaller subnetworks are trained with the help of large subnetworks to grow together. In the end, all of the subnetworks with different sizes are supported, allowing fast specialization based on the platform's power and speed limits. It supports many hardware devices with zero training cost when adding a new device.

In total, one OFA, the researchers found, can comprise more than 10 quintillion - that's a 1 followed by 19 zeroes - architectural settings, covering probably all platforms ever needed.

But training the OFA and searching it ends up being far more efficient than spending hours training each neural network per platform. Moreover, OFA does not compromise accuracy or inference efficiency. Instead, it provides state-of-the-art ImageNet accuracy on mobile devices. And, compared with state-of-the-art industry-leading CNN models , the researchers say OFA provides 1.5-2.6 times speedup, with superior accuracy.

"That's a breakthrough technology," Han says. "If we want to run powerful AI on consumer devices, we have to figure out how to shrink AI down to size."

"The model is really compact. I am very excited to see OFA can keep pushing the boundary of efficient deep learning on edge devices," says Chuang Gan, a researcher at the MIT-IBM Watson AI Lab and co-author of the paper.

"If rapid progress in AI is to continue, we need to reduce its environmental impact," says John Cohn, an IBM fellow and member of the MIT-IBM Watson AI Lab. "The upside of developing methods to make AI models smaller and more efficient is that the models may also perform better."

Research Report: Once-For-All: Train One Network And Specialize It For Efficient Deployment On Diverse Hardware Platforms


Related Links
MIT News Office
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CHIP TECH
Organic memory devices show promise for flexible, wearable, personalized computing
Washington DC (SPX) Apr 22, 2020
The advent of artificial intelligence, machine learning and the internet of things is expected to change modern electronics and bring forth the fourth Industrial Revolution. The pressing question for many researchers is how to handle this technological revolution. "It is important for us to understand that the computing platforms of today will not be able to sustain at-scale implementations of AI algorithms on massive datasets," said Thirumalai Venkatesan, one of the authors of a paper published i ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
S.African writer Deon Meyer looks back at his 2016 virus thriller

Kiev says 'no open fire' in Chernobyl nuclear zone after rain

BFBC nabs $569M for border wall construction in California

China offers reward for catching Russia border crossers over virus fears

CHIP TECH
Quantum entanglement offers unprecedented precision for GPS, imaging and beyond

India develops unique model to hit enemy targets without positioning error

Apple data show dramatic impact of virus on movement

USSF reschedules next GPS launch

CHIP TECH
Origins of human language pathway in the brain at least 25 million years old

Oldest ever human genetic evidence clarifies dispute over our ancestors

Genomics help scientists estimate the population size of the first Samoans

Ancient string discovery sheds light on Neanderthal life

CHIP TECH
New algorithm can predict evolution of genetic mutations

Wallflowers evolved a pair of complementary chemical defenses

Bird companions help black rhinos avoid poachers

The link between virus spillover, wildlife extinction and the environment

CHIP TECH
China virus city in transport shutdown as WHO delays decision

Europe boosts China flight checks as killer virus spreads

Global health emergencies: A rarely used call to action

Coronavirus second wave may be even worse: US health chief

CHIP TECH
Hong Kong activists arrested over last year's democracy rallies

China censorship fuels virus revival risk: rights watchdog

McDonald's apologises after China store bans black people

Fearful of virus return, Beijing turns into virtual fortress

CHIP TECH
Trump orders Pentagon to boost drug interdiction efforts

In Colombia, fleet of cartel narco-subs poses challenge for navy

CHIP TECH








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.