. Medical and Hospital News .




.
TECH SPACE
Researchers Demonstrate Cheaper Way To Produce NFO Thin Films
by Staff Writers
Raleigh, NC (SPX) Sep 25, 2012

File image.

Researchers from North Carolina State University and the Georgia Institute of Technology have demonstrated a less-expensive way to create textured nickel ferrite (NFO) ceramic thin films, which can easily be scaled up to address manufacturing needs. NFO is a magnetic material that holds promise for microwave technologies and next-generation memory devices.

Specifically, this is the first time researchers have used a chemical deposition process to create NFO thin films that are "textured" - meaning they have an aligned crystalline structure. Arraying the crystalline structure in an orderly fashion is important because it maximizes the magnetic properties of the material.

Using a chemical deposition process also makes it easier to modify, or "dope," the NFO by adding additional materials, such as zinc. By doping the NFO, researchers can optimize the material for various applications. For example, adding zinc allows the NFO to retain its magnetic properties at higher temperatures.

The technique used to create the NFO thin films begins by introducing nickel and iron compounds into an organic solvent to create an NFO solution. The solution is then injected onto a silicon wafer that has been coated with platinum. The wafer is then spun, spreading the solution uniformly across the wafer's surface. The wafer is heated to evaporate the solvent, then heated again to 750 degrees Celsius to crystallize the NFO.

"This approach can be used to deposit textured NFO thin films over areas at least as large as 10 centimeters by 10 centimeters," says Dr. Justin Schwartz, co-author of the paper, Kobe Steel Distinguished Professor and Department Head of the Materials Science and Engineering Department at NC State. Previous efforts to create textured NFO thin films have relied on techniques that can only deposit such thin films over a small area.

The paper, "Growth of (111) oriented NiFe2O4 polycrystalline thin films on Pt (111) via sol-gel processing," was published online Sept. 19 in the Journal of Applied Physics. The paper's lead author is Safoura Seifikar, a Ph.D. student at NC State. The paper was co-authored by Edward Sachet, a Ph.D. student at NC State; Dr. Thomas Rawdanowicz, research professor at NC State; Ali Tabei, a Ph.D. student at Georgia Tech; and Dr. Nazanin Bassiri-Gharb of Georgia Tech. The research was funded by the National Science Foundation.

"Growth of (111) oriented NiFe2O4 polycrystalline thin films on Pt (111) via sol-gel processing" Authors: Safoura Seifikar, Edward Sachet, Thomas Rawdanowicz and Justin Schwartz, North Carolina State University; Ali Tabei and Nazanin Bassiri-Gharb, Georgia Institute of Technology Published: online Sept. 19 in Journal of Applied Physics

Related Links
North Carolina State University
Space Technology News - Applications and Research




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



TECH SPACE
Glass half full: Double-strength glass may be within reach
Houston TX (SPX) Sep 25, 2012
Glass is strong enough for so much: windshields, buildings and many other things that need to handle high stress without breaking. But scientists who look at the structure of glass strictly by the numbers believe some of the latest methods from the microelectronics and nanotechnology industry could produce glass that's about twice as strong as the best available today. Rice University chem ... read more


TECH SPACE
Automatic building mapping could help emergency responders

EU offers Italy 670 mn euros in quake aid

Norway supplies $168M for famine relief

Haunting 'Land of Hope' part shot on location in Fukushima

TECH SPACE
China launches another 2 navigation system satellites

Improved positioning indoors

ITT Exelis announces new capability in GPS interference, detection and geolocation

Countdown: a month to go to Galileo's next launch

TECH SPACE
Breaking up harder to do on Facebook

Genetic mutation may have allowed early humans to migrate throughout Africa

Ancient tooth may provide evidence of early human dentistry

People change moral position without even realizing it

TECH SPACE
How bumblebees find efficient routes without a GPS

DR Congo conflict puts endangered mountain gorillas in peril

Major changes needed to protect species and ecosystems

Rapid urban expansion threatens biodiversity

TECH SPACE
Swine flu vaccine linked to child narcolepsy: EU watchdog

Cambodians fight malaria with the push of a button

Elton John cites US discrimination of HIV inmates

Yosemite extends hantavirus alert to 230,000

TECH SPACE
China police kill homeowner in demolition protest

Chinese man wrongly sent to labour camp: panel

H.K. students protest over 'brainwashing' classes

China villager bombs local government office

TECH SPACE
Suspect in murder of Chinese sailors admits guilt

Philippine forces rescue Chinese hostage, kill kidnappers

Obama denies gun-running probe a 'whitewash'

US authorities botched Mexico gun-running probe

TECH SPACE
Walker's World: Super-Mario's new dawn

China's stance could weaken its economy: Japan PM

High-frequency stock trade risky, unfair: experts

China vows ongoing support to resolve euro crisis


Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement