Medical and Hospital News  
CARBON WORLDS
Researchers demonstrate size quantization of Dirac fermions in graphene
by Staff Writers
Bethlehem PA (SPX) May 24, 2016


This is a dirac cone showing a typical dispersion relation (energy vs. momentum) for 2-D graphene material. Red cross-sectional lines represent quantization of the energy (and momentum) due to a finite size constriction. Image courtesy B. Terres, L. A. Chizhova, F. Libisch, J. Peiro, D. Jorger, S. Engels, A. Girschik, K. Watanabe, T. Taniguchi, S. V. Rotkin, J. Burgdorfer, C. Stampfer. For a larger version of this image please go here.

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

One of the most direct manifestations of quantum mechanics is quantization. Quantization results in the discrete character of physical properties at small scales, which could be the radius of an atomic orbit or the resistance of a molecular wire. The most famous one, which won Albert Einstein the Nobel Prize, is the quantization of the photon energy in the photoelectric effect - the observation that many metals emit electrons when light shines upon them.

Quantization occurs when a quantum particle is confined to a small space. Its wave function develops a standing wave pattern, like waves in a small puddle. Physicists then speak of size quantization: the energy of the particle may only take those values where the nodal pattern of the standing wave matches the system boundary.

A striking consequence of size quantization is quantized conductance: the number of particles that can simultaneously traverse a narrow corridor, a so-called nanoconstriction, become discrete. As a result the current through such a constriction is an integer multiple of the quantum of conductance.

In a recent joint experimental and theoretical work, an international group of physicists demonstrated size quantization of charge carriers, i.e. quantized conductance in nanoscale samples of graphene. The results have been published in an article called "Size quantization of Dirac fermions in graphene constrictions" in Nature Communications.

The high-quality material graphene, a single-atomic layer of carbon, embedded in hexagonal boron nitride demonstrates unusual physics due to the hexagonal - or honey comb - symmetry of its lattice. However, observing size quantization of charge carriers in graphene nanoconstrictions has, until now, proved elusive due to the high sensitivity of the electron wave to disorder.

The researchers demonstrated quantization effects at very low temperatures (liquid Helium), where the influence of thermal disorder ceases. This new approach - of encapsulating graphene constrictions between layers of boron nitride - allowed for exceptionally clean samples, and thus highly accurate measurements.

At zero magnetic field, the measured current shows clear signatures of size quantization, closely following theoretical predictions. For increasing magnetic field, these structures gradually evolve into the Landau levels of the quantum Hall effect.

"The high sensitivity of this transition to scattering at the constriction edges reveals indispensable details about the role of edge scattering in future graphene nanoelectronic devices," said Slava V. Rotkin, professor of physics and materials science and engineering at Lehigh University and a co-author of the study.

Research paper: "Size quantization of Dirac fermions in graphene constrictions"


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Lehigh University
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CARBON WORLDS
Unveiling the electron's motion in a carbon nanocoil
Toyohashi, Japan (SPX) May 19, 2016
Carbon nanocoils (CNCs) are an exotic class of low-dimensional nanocarbons whose helical shape may make them suitable for applications such as microwave absorbers and various mechanical components such as springs. Typical thicknesses and coil diameters of CNCs fall within the ranges of 100-400 nm and 400-1000 nm, respectively, and their full lengths are much larger, on the order of several tens ... read more


CARBON WORLDS
MH370 kin 'gravely concerned' at impending end of search

Orbita, a ghost of Chernobyl in the heart of Ukraine

Libya coastguard intercepts 850 migrants: navy

Artist Ai Weiwei says Gaza key part of refugee crisis

CARBON WORLDS
Europe's sat-nav system launches fresh pair of satellites

Europe grows Galileo sat-nav system

Mission control ready for next Galileo pair

China to launch 30 Beidou navigation satellites in next 5 years

CARBON WORLDS
Global data shows inverse relationship, shift in human use of fire

From Israel's army to Hollywood: the meteoric rise of Krav Maga

New evidence that humans settled in southeastern US far earlier than previously believed

Climate change may have contributed to extinction of Neanderthals

CARBON WORLDS
Scientists witness rare evolutionary event: Multiplying introns

Amphibians in continued global decline

Why do animals hide their warning signals? A paradox explained

Plants are 'biting' back

CARBON WORLDS
A global early warning system for infectious diseases

NASA Helps Forecast Zika Risk

Cellphone-sized device quickly detects the Ebola virus

Threat of novel swine flu viruses in pigs and humans

CARBON WORLDS
Never again, say China media after Cultural Revolution anniversary

Ancient Chinese pottery reveals 5,000-yr-old beer brew

Top China official promises to 'listen' to Hong Kong

For Allah, China and Marx: theological mix for young imams

CARBON WORLDS
Indonesia frees vessel captured by suspected pirates: navy

Founder of online underworld bank gets 20 years in prison

Colombia authorizes air strikes against criminal gangs

New force raids El Salvador gang districts

CARBON WORLDS
G7 warns over global economy as currency row flares

Global growth tops agenda as G7 meeting kicks off in Japan

Currency wars, fiscal stimulus rift in focus at G7 meeting

Chinese pouring billions into US real estate: study









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.