![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Aarhus, Denmark (SPX) Dec 28, 2015
For the first time, researchers have succeeded in producing 3D images showing oxygen and CO2 transport in the lungs. The new method provides hope for better treatment of COPD and lung cancer. Every time we breathe, oxygen and CO2 is transferred between our blood and the air in the lungs. It is crucial for us to maintain life that this gas transport functions, and detailed knowledge about the movement of oxygen and CO2 is therefore also important. Not least in the case of patients with pulmonary lung diseases such as COPD, lung cancer and asthma, and also for acutely ill patients who are on a respirator. For these patients, the latest research in the area may turn out to be the first step on the road to more effective forms of treatment. "We are the first to develop a new model for how you can see into the lungs. The model provides a kind of 3D map of how and where the CO2 and oxygen transfers take place," says engineer and PhD student Troels Johansen from the Department of Clinical Medicine at Aarhus University. Woking in collaboration with researchers from Harvard Medical School, Troels Johansen has developed a mathematical model as part of his PhD project that provides the basis for the 3D images, which in turn are developed from PET scans. The new method has just been published in an article in the scientific journal Respiratory Physiology and Neurobiology.
Related Links Aarhus University Hospital and Medical News at InternDaily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |