Medical and Hospital News  
SOLAR DAILY
Researchers discover new lead-free perovskite material for solar cells
by Staff Writers
Providence RI (SPX) Feb 14, 2018

Researchers have shown that titanium is an attractive choice to replace the toxic lead in the prevailing perovskite thin film solar cells.

A class of materials called perovskites has emerged as a promising alternative to silicon for making inexpensive and efficient solar cells. But for all their promise, perovskites are not without their downsides. Most contain lead, which is highly toxic, and include organic materials that are not particularly stable when exposed to the environment.

Now a group of researchers at Brown University and University of Nebraska - Lincoln (UNL) has come up with a new titanium-based material for making lead-free, inorganic perovskite solar cells. In a paper published in the journal Joule (a new energy-focused sister journal to Cell), the researchers show that the material can be a good candidate, especially for making tandem solar cells - arrangements in which a perovskite cells are placed on top of silicon or another established material to boost the overall efficiency.

"Titanium is an abundant, robust and biocompatible element that, until now, has been largely overlooked in perovskite research," said the senior author of the new paper, Nitin Padture, the Otis E. Randall University Professor in Brown's School of Engineering and director of Institute for Molecular and Nanoscale Innovation. "We showed that it's possible to use titanium-based material to make thin-film perovskites and that the material has favorable properties for solar applications which can be tuned."

Interest in perovskites, a class of materials with a particular crystalline structure, for clean energy emerged in 2009, when they were shown to be able to convert sunlight into electricity. The first perovskite solar cells had a conversion efficiency of only about 4 percent, but that has quickly skyrocketed to near 23 percent, which rivals traditional silicon cells. And perovskites offer some intriguing advantages. They're potentially cheaper to make than silicon cells, and they can be partially transparent, enabling new technologies like windows that generate electricity.

"One of the big thrusts in perovskite research is to get away from lead-based materials and find new materials that are non-toxic and more stable," Padture said. "Using computer simulations, our theoretician collaborators at UNL predicted that a class of perovskites with cesium, titanium and a halogen component (bromine or/and iodine) was a good candidate. The next step was to actually make a solar cell using that material and test its properties, and that's what we've done here."

The team made semi-transparent perovskite films that had bandgap - a measure of the energy level of photons the material can absorb - of 1.8 electron volts, which is considered to be ideal for tandem solar applications. The material had a conversion efficiency of 3.3 percent, which is well below that of lead-based cells, but a good start for an all-new material, the researchers say.

"There's a lot of engineering you can do to improve efficiency," Yuanyuan Zhou, an assistant professor (research) of engineering at Brown and a study co-author. "We think this material has a lot of room to improve."

Min Chen, a Ph.D. student of materials science at Brown and the first author of the paper, used a high-temperature evaporation method to prepare the films, but says the team is investigating alternative methods. "We are also looking for new low-temperature and solvent-based methods to reduce the potential cost of cell fabrication," he said.

The research showed the material has several advantages over other lead-free perovskite alternatives. One contender for a lead-free perovskite is a material made largely from tin, which rusts easily when exposed to the environment. Titanium, on the hand, is rust-resistant. The titanium-perovskite also has an open-circuit voltage - a measure of the total voltage available from a solar cell - of over one volt. Other lead-free perovskites generally produce voltage smaller than 0.6 volts.

"Open-circuit voltage is a key property that we can use to evaluate the potential of a solar cell material," Padture said. "So, having such a high value at the outset is very promising."

The researchers say that material's relatively large bandgap compared to silicon makes it a prime candidate to serve as the top layer in a tandem solar cell. The titanium-perovskite upper layer would absorb the higher-energy photons from the sun that the lower silicon layer can't absorb because of its smaller bandgap. Meanwhile, lower energy photons would pass through the semi-transparent upper layer to be absorbed by the silicon, thereby increasing the cell's total absorption capacity.

"Tandem cells are the low-hanging fruit when it comes to perovskites," Padture said. "We're not looking to replace existing silicon technology just yet, but instead we're looking to boost it. So if you can make a lead-free tandem cell that's stable, then that's a winner. This new material looks like a good candidate."

Research paper


Related Links
Brown University
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Avoiding blackouts with 100 percent renewable energy
Stanford CA (SPX) Feb 13, 2018
Renewable energy solutions are often hindered by the inconsistencies of power produced by wind, water and sunlight and the continuously fluctuating demand for energy. New research by Mark Z. Jacobson, a professor of civil and environmental engineering at Stanford University, and colleagues at the University of California, Berkeley, and Aalborg University in Denmark finds several solutions to making clean, renewable energy reliable enough to power at least 139 countries. In their paper, published a ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Fukushima operator ordered to pay $10 million in new damages

French watchdog points at Russia over radiation cloud

Eight dead, three missing after China road collapse

Got a coastal bridge to retrofit? There's an optimal approach for that

SOLAR DAILY
Europe claims 100 million users for Galileo satnav system

Airbus selected by ESA for EGNOS V3 program

Pentagon probes fitness-app use after map shows sensitive sites

China sends twin BeiDou-3 navigation satellites into space

SOLAR DAILY
Lasers reveal ancient Mayan civilization hiding beneath Guatemalan canopy

Scandinavians shaped by several waves of immigration

Truck damages Peru's ancient Nazca lines

Study details Peking Man's teeth

SOLAR DAILY
Cheetahs' inner ear is one-of-a-kind, vital to high-speed hunting

Red pandas rescued in Laos stir fears over exotic pet trade

Scientists trace mysterious origin of Bornean elephants

All that pecking may give woodpeckers brain damage

SOLAR DAILY
UV light can kill airborne flu virus, study finds

Playing 20 Questions with Bacteria to Distinguish Harmless Organisms from Pathogens

Scientists report big improvements in HIV vaccine production

Plague outbreak in Madagascar revived dread of a killer

SOLAR DAILY
Mercedes apologises to China after quoting Dalai Lama

Publisher detained in China 'confesses', blames Sweden

'Gotta find a way': Chinese rap in crisis after crackdown

Hong Kong schools shut over deadly flu outbreak

SOLAR DAILY
Thai navy says 11 million pill haul a record from Laos

SOLAR DAILY








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.