Medical and Hospital News  
BIO FUEL
Researchers discover unique property of critical methane-producing enzyme
by Staff Writers
Urbana IL (SPX) Sep 21, 2017


"As the project moved along . . . I realized the impact of the discovery we made, that this modification we thought was important and involved in making methane or breaking down methane, suddenly was not playing as important a role as people in the literature had been talking about for the last 10 or 15 years - maybe even longer, actually."

An unexpected discovery has given scientists a greater understanding of an important methane-producing enzyme.

A team of researchers at the Carl R. Woese Institute for Genomic Biology (IGB) at the University of Illinois at Urbana-Champaign published a paper in eLife that outlined their findings on an enzyme called methyl-coenzyme M reductase, or MCR.

Their findings overturn what was previously believed to be true in the field: that a set of unique modifications present in MCR were essential to how the enzyme functions.

They discovered that these modifications were in fact not essential, a finding that will bring scientists a step closer to fully understanding this enzyme, which plays an important role in methane production and the carbon cycle.

Methane is an important greenhouse gas that contributes to approximately 20 percent of the greenhouse effect, which contributes to the warming of earth.

Methane comes from both geological sources and biological sources, including from a group of microorganisms called methanogens. These microscopic organisms, which are a member of the domain Archaea, produce methane as the byproduct of their metabolism. Gigatons of methane are produced by methanogens every year.

Methanogens have the enzyme MCR, which is the only enzyme that makes methane. It's critical for both the production and consumption of methane.

"This is a hugely important enzyme," said Professor of Molecular and Cellular Biology William Metcalf, co-author of the paper and leader of IGB's Mining Microbial Genomes (MMG) theme. "I would argue it's one of the most important enzymes on earth for the carbon cycle."

MCR also has some unusual properties. Unlike most enzymes, MCR has a series of modifications that change the enzyme's amino acids. These modifications were previously believed to have been essential to the enzyme's functions.

Before now, it's been impossible to do a genetic analysis of these enzymes - which would include taking away these modifications and looking at how the enzyme works without them.

"It was believed that if you did that, the enzyme wouldn't work," Metcalf said. "Because that enzyme is required for viability of the organism, it was thought to be an essential gene."

But Douglas Mitchell, a professor of chemistry and faculty member of IGB's MMG theme, thought otherwise. He and his research laboratory had been studying a class of molecules that had one of the modifications that is also present in MCR. They figured out how this modification was done and predicted that the same enzymatic machinery used to modify MCR in methanogens was the same machinery used to make antibiotics and bacteria.

However, their lab had a limitation, according to Nilkamal Mahanta, a postdoctoral researcher in Mitchell's lab who was involved with the research. Their lab was limited in its ability to perform the kind of experiment needed to see if this was true. The organisms they wanted to study exist only in anaerobic environments, which do not contain oxygen.

IGB Fellow Nayak had recently developed a novel genetic tool that could manipulate this type of organism. She used this tool to study the physical properties of MCR and understand how it works - and found that the modification was not essential to the enzyme's function.

This came as a surprise to many in this field of research, and to Metcalf and Nayak as well.

"When I started this project, I didn't quite know as much about the importance of these modifications," Nayak said.

"As the project moved along . . . I realized the impact of the discovery we made, that this modification we thought was important and involved in making methane or breaking down methane, suddenly was not playing as important a role as people in the literature had been talking about for the last 10 or 15 years - maybe even longer, actually."

Their findings suggest there is more to be uncovered about this enzyme and the role it plays in producing and consuming methane.

Research paper

BIO FUEL
Re-engineering biofuel-producing bacterial enzymes
Washington DC (SPX) Sep 15, 2017
Converting fibrous plant waste, like corn stalks and wood shavings, into fermentable simple sugars for the production of biofuel is no simple process. Bacteria must break down tough leaves, stems and other cellulosic matter resistant to degradation to turn them into usable energy. Helping bacteria become more efficient in this process could result in more affordable biofuels for our gas ta ... read more

Related Links
Institute for Genomic Biology at University of Illinois
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
Japan government not responsible for Fukushima: court

What now? Mexicans in shelters ask themselves after quake

Puerto Rico wants US aid after quake but not second-class treatment

NASA-Produced Damage Maps May Aid Mexico Quake Response

BIO FUEL
China's BeiDou-3 satellites get new chips

US Air Force Awards Lockheed Martin GPS M-Code Early Use Ground System Upgrade Contract

Top 5 Businesses in Ireland that Need GPS Tracking and Location-Sharing

Arianespace to orbit four Galileo satellites on two Ariane 62 launches

BIO FUEL
Cell phone data coupled with sewage testing show drug use patterns

Royal tomb of ancient Mayan ruler found in Guatemala

How Teotihuacan's urban design was lost and found

Huge genetic diversity among Papuan New Guinean peoples revealed

BIO FUEL
Study finds wolves understand cause and effect better than dogs

Mathematics predicts a sixth mass extinction

Imagining a world without species

Snow leopards no longer 'endangered,' conservationists rule

BIO FUEL
Carbohydrates may be the key to a better malaria vaccine

Using NASA Satellite Data to Predict Malaria Outbreaks

New method for producing malaria treatment at large scales

Tick tock and the risk of tick-borne disease

BIO FUEL
Patten on egg tarts and the future of Hong Kong

An ancient Chinese fishing community washes ashore

The last days of a 'village' in China's Silicon Valley

China lifts 10-year travel ban on feminist activist

BIO FUEL
Huge Australia-bound cocaine haul siezed by French navy

Indonesia to deport 153 Chinese for $450 million scam

US lists China among worst human trafficking offenders

BIO FUEL








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.