Medical and Hospital News  
ENERGY TECH
Researchers make next-generation, high-toughness battery component
by Staff Writers
Providence RI (SPX) Jun 19, 2020

Research shows that graphene (rGO) can help prevent the propagation of cracks in ceramic materials used for battery electrolytes.

A team of Brown University researchers has found a way to double the toughness of a ceramic material used to make solid-state lithium ion batteries. The strategy, described in the journal Matter, could be useful in bringing solid-state batteries to the mass market.

"There's huge interest in replacing the liquid electrolytes in current batteries with ceramic materials because they're safer and can provide higher energy density," said Christos Athanasiou, a postdoctoral researcher in Brown's School of Engineering and lead author of the research. "So far, research on solid electrolytes has focused on optimizing their chemical properties. With this work, we're focusing on the mechanical properties, in the hope of making them safer and more practical for widespread use."

The electrolyte is the barrier between a battery's cathode and anode through which lithium ions flow during charging or discharging. Liquid electrolytes work pretty well - they're found in most batteries in use today - but they have some problems. At high currents, tiny filaments of lithium metal can form inside the electrolytes, which cause batteries to short circuit. And since liquid electrolytes are also highly flammable, those shorts can lead to fires.

Solid ceramic electrolytes aren't flammable, and there's evidence that they can prevent the formation of lithium filaments, which could enable batteries to operate at higher currents. However, ceramics are highly brittle materials that can fracture during the manufacturing process and during use.

For this new study, the researchers wanted to see if infusing a ceramic with graphene - a super-strong carbon-based nanomaterial - could increase the material's fracture toughness (a material's ability to withstand cracking without falling apart) while maintaining the electronic properties needed for electrolyte function.

Athanasiou worked with Brown engineering professors Brian Sheldon and Nitin Padture, who for years have used nanomaterials to toughen ceramics for use in the aerospace industry. For this work, the researchers made tiny platelets of graphene oxide, mixed them with powder of a ceramic called LATP, and then heated the mixture to form a ceramic-graphene composite.

Mechanical testing of the composite showed a more than two-fold increase in toughness compared to the ceramic alone. "What's happening is that when crack starts in a material, the graphene platelets essentially hold the broken surfaces together so that more energy is required for the crack to run," Athanasiou said.

Experiments also showed that the graphene didn't interfere with the electrical properties of the material. The key was making sure the right amount of graphene was added to the ceramic. Too little graphene wouldn't achieve the toughening effect. Too much would cause the material to become electrically conductive, which is not desired in an electrolyte.

"You want the electrolyte to conduct ions, not electricity," Padture said. "Graphene is a good electrical conductor, so people may think we're shooting ourselves in the foot by putting a conductor in our electrolyte. But if we keep the concentration low enough, we can keep the graphene from conducting, and we still get the structural benefit."

Taken together, the results suggest that nanocomposites could provide a path forward to making safer solid electrolytes with mechanical properties to be used in everyday applications. The group plans to continue working to improve the material, trying nanomaterials other than graphene and different types of ceramic electrolyte.

"To our knowledge, this is the toughest solid electrolyte that anyone has made to date," Sheldon said. "I think what we've shown is that there's a lot of promise in using these composites in battery applications."

Research paper


Related Links
Brown University
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Spontaneous formation of nanoscale hollow structures could boost battery storage
Atlanta GA (SPX) Jun 10, 2020
An unexpected property of nanometer-scale antimony crystals - the spontaneous formation of hollow structures - could help give the next generation of lithium ion batteries higher energy density without reducing battery lifetime. The reversibly hollowing structures could allow lithium ion batteries to hold more energy and therefore provide more power between charges. Flow of lithium ions into and out of alloy battery anodes has long been a limiting factor in how much energy batteries could hold usi ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Amazon unveils visual aid to workplace distancing

Parking in a pandemic

Facebook blocks white nationalists organizing move on protests

China says US protests show 'chronic disease' of racism

ENERGY TECH
China's BeiDou navigation enables smarter agricultural production

GPS III SV-08 core mate complete, space vehicle named for NASA Trailblazer

China tests inter-satellite links of BeiDou navigation system

Penultimate BeiDou satellite starts operation in network

ENERGY TECH
Discovery of oldest bow and arrow technology in Eurasia

US top court in landmark ruling to protect LGBT workers

Tiny songbird is East Asia's 'oldest' carved artwork

DNA helps researchers understand interactions between Stone Age cultures

ENERGY TECH
In virus lockdown, Europe's predators regain turf

Giant tortoise Diego, a hero to his species, is home

Hummingbirds see 'nonspectral' colors humans can only imagine

Chinese conservationists battle to save pangolins from poachers

ENERGY TECH
China virus city in transport shutdown as WHO delays decision

Europe boosts China flight checks as killer virus spreads

Global health emergencies: A rarely used call to action

Beijing virus situation 'extremely severe' as 27 new cases reported

ENERGY TECH
Australian PM 'concerned' over China death sentence for Oz actor

China's foreigner ban leaves global businesses in limbo

China will handle some Hong Kong national security cases, says official

Fearful Hong Kongers rush to secure limited British passports

ENERGY TECH
Sweden extradites Chinese 'multi-million-dollar money launderer' to US

Trump orders Pentagon to boost drug interdiction efforts

ENERGY TECH








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.