Medical and Hospital News  
CHIP TECH
Researchers report advances in stretchable semiconductors, integrated electronics
by Staff Writers
Houston TX (SPX) Feb 04, 2019

Researchers from the University of Houston have reported significant advances in the field of stretchable, rubbery electronics.

Researchers from the University of Houston have reported significant advances in stretchable electronics, moving the field closer to commercialization.

In a paper published Friday, Feb. 1, in Science Advances, they outlined advances in creating stretchable rubbery semiconductors, including rubbery integrated electronics, logic circuits and arrayed sensory skins fully based on rubber materials.

Cunjiang Yu, Bill D. Cook Assistant Professor of mechanical engineering at the University of Houston and corresponding author on the paper, said the work could lead to important advances in smart devices such as robotic skins, implantable bioelectronics and human-machine interfaces.

Yu previously reported a breakthrough in semiconductors with instilled mechanical stretchability, much like a rubber band, in 2017.

This work, he said, takes the concept further with improved carrier mobility and integrated electronics.

"We report fully rubbery integrated electronics from a rubbery semiconductor with a high effective mobility ... obtained by introducing metallic carbon nanotubes into a rubbery semiconductor with organic semiconductor nanofibrils percolated," the researchers wrote. "This enhancement in carrier mobility is enabled by providing fast paths and, therefore, a shortened carrier transport distance."

Carrier mobility, or the speed at which electrons can move through a material, is critical for an electronic device to work successfully, because it governs the ability of the semiconductor transistors to amplify the current.

Previous stretchable semiconductors have been hampered by low carrier mobility, along with complex fabrication requirements. For this work, the researchers discovered that adding minute amounts of metallic carbon nanotubes to the rubbery semiconductor of P3HT - polydimethylsiloxane composite - leads to improved carrier mobility by providing what Yu described as "a highway" to speed up the carrier transport across the semiconductor.


Related Links
University of Houston
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CHIP TECH
New quantum system could help design better spintronics
West Lafayette IN (SPX) Jan 30, 2019
Researchers have created a new testing ground for quantum systems in which they can literally turn certain particle interactions on and off, potentially paving the way for advances in spintronics. Spin transport electronics have the potential to revolutionize electronic devices as we know them, especially when it comes to computing. While standard electronics use an electron's charge to encode information, spintronic devices rely on another intrinsic property of the electron: its spin. Spint ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Drought, Deluge Turned Stable Landslide into Disaster

Study reveals wildlife is abundant in Chernobyl

Chinese chemical firm 'misled' investigators over deadly blast

US sends 3,750 more troops to Mexico border: Pentagon

CHIP TECH
Magnetic north pole leaves Canada, on fast new path

Kite-blown Antarctic explorers make most southerly Galileo positioning fix

NOAA releases early update for World Magnetic Model

BeiDou achieves real-time transmission of deep-sea data

CHIP TECH
Western lowland gorillas enjoy peaceful, dynamic familial relations

A taste for fat may have made us human

Chimpanzees become expert nut-crackers faster than humans

The Caucasus: Complex interplay of genes and cultures

CHIP TECH
India's 'granny' elephant dies aged 88

Ice Age survivors or stranded travellers? A new subterranean species discovered in Canada

Leaves are nature's most sophisticated environment sensors

Venom potency varies from snake to snake, even in same population

CHIP TECH
Protecting those on the frontline from Ebola

China disciplines 80 officials linked to major vaccine scandal

Researchers develop new approach for vanquishing superbugs

Hong Kong scientists claim 'broad-spectrum' antiviral breakthrough

CHIP TECH
China entertainment endures 'bitter winter' after crackdowns

Australia cancels residency of politically connected Chinese billionaire

Chinese 'underground' bishop gains official recognition: state media

Muse: Myanmar's militia-run, billion-dollar gateway to China

CHIP TECH
CHIP TECH








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.