Medical and Hospital News  
EARLY EARTH
Researchers reveal new mechanism of end-permian terrestrial mass extinction
by Staff Writers
Los Angeles CA (SPX) Jun 21, 2022

stock image only

End-Permian extinction (EPE) is the greatest biotic crisis in Earth's history, eliminating more than 90% of species in the oceans and more than 70% of species on land.

Researchers led by Dr. LI Menghan from the University of Science and Technology of China (USTC) conducted a S-isotopic study on EPE in the Sydney Basin, and found a sharp S-isotopic decrease coincided with the terrestrial extinction.

They discovered climatic perturbations of short-term cooling caused by the sulfate aerosols, along with longer-term global warming. "Their interactions may have contributed to the EPE on land," said Dr. LI.

Regarding the study of the environment and the mechanism of the EPE, many studies have focused on the extinction of marine organisms and their mechanisms, while studies on the extinction of terrestrial life are rare.

In this study, the research team conducted detailed measurements and multiple data analyses of over 1,000 m of boreholes and associated stratigraphy to first pinpoint the stratigraphy of terrestrial organisms extinct in the Sydney Basin. The data indicated that the extinction of terrestrial organisms in the Sydney Basin preceded the global marine extinction by approximately 200,000 to 600,000 years.

On this basis, the team suggested that the high pre-extinction S-isotopic compositions of pyrite from the Sydney Basin may have been produced by similar sulfur cycling processes in sulfate-deficient lake systems. A sharp S-isotopic decrease coincided with the terrestrial extinction, which was manifested in three stages.

"The dominant source for the elevated sulfate concentrations in the extinction interval came from the dispersal of atmospheric sulfate aerosols emitted by the Siberian Traps volcanism," said Dr. LI.

The fallout of sulfuric acid rain resulting from the Siberian Traps Large Igneous Province (STLIP) may have raised the sulfate concentrations in the Sydney Basin, which coincided with the EPE on land. Climatic perturbations of short-term cooling caused by the sulfate aerosols, along with longer-term global warming and their interactions, have contributed to the EPE on land.

The S-isotopic data from the well-defined biostratigraphy and precise geochronology of the Sydney Basin provide new and independent evidence for the massive deposition of atmospheric sulfate, which may play a critical role in the EPE on land.

Related results were published in Earth and Planetary Science Letters on June 1.

Research Report:Sulfur isotopes link atmospheric sulfate aerosols from the Siberian Traps outgassing to the end-Permian extinction on land


Related Links
University of Science and Technology of China
Explore The Early Earth at TerraDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


EARLY EARTH
New insights into the interaction of ocean, continent and atmosphere 2.7 billion years ago
Bremen Germany (SPX) Jun 14, 2022
What did the Earth look like 2.7 billion years ago and what were the differences compared to today? What was the chemical composition of the oceans and atmosphere? When did life evolve on Earth, that produced enough oxygen to permanently change the environment? How did the interaction of the Earth's mantle and crust work? These are all crucial questions for understanding our planet. The Temagami BIF rock formation provides clues to answering these questions. The abbreviation BIF stands for Banded ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARLY EARTH
UN working to get shelter, trauma care to Afghan quake scene

Iraqi migrant in UK fears Rwanda deportation, despite reprieve

One dead in Shanghai chemical plant explosion

Sri Lankan navy stops Australia-bound migrant boat

EARLY EARTH
The face of Galileo

Astrocast acquires Hiber, accelerates OEM strategy.

Volunteers watching the skies for the weather and stars

EUSPA celebrates its first 365 days of new Galileo operations

EARLY EARTH
How humans evolved to get along

Healthy human brains are hotter than previously thought, exceeding 40 degrees

Are we born with a moral compass

Amazon's indigenous leaders make plea at Americas summit

EARLY EARTH
Malawi to move 250 elephants from overpopulated park

Thrice postponed UN biodiversity summit set for December

Crunch talks kick off on global pact to protect nature

Biodiversity conference moved from China to Canada: UN

EARLY EARTH
Macau shuts almost everything but casinos to battle Covid outbreak

Iraq confirms 13 cholera cases, scores suspected

Covid in Hong Kong shows 'signs of rebound', city leader says

US envoy sees China lockdowns extending into 2023

EARLY EARTH
New Hong Kong cabinet includes four under US sanctions

China's Xi to host virtual summit for BRICS emerging economies

China's middle class looks to flee as Covid policies bite

Australian defence minister introduced to Chinese counterpart

EARLY EARTH
EARLY EARTH








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.