Medical and Hospital News  
SOLAR DAILY
Researchers sew atomic lattices seamlessly together
by Staff Writers
Chicago IL (SPX) Mar 13, 2018

Scientists with the University of Chicago revealed a technique to 'sew' two patches of crystals seamlessly together at the atomic level to create atomically-thin fabrics.

Joining different kinds of materials can lead to all kinds of breakthroughs. It's an essential skill that allowed humans to make everything from skyscrapers (by reinforcing concrete with steel) to solar cells (by layering materials to herd along electrons).

In electronics, joining different materials produces heterojunctions-the most fundamental components in solar cells, LEDs or computer chips. The smoother the seam between two materials, the more easily electrons flow across it; essential for how well the electronic devices function. But they're made up of crystals-rigid lattices of atoms, which may have very different spacing-and they don't take kindly to being mashed together.

In a study published March 8 in Science, scientists with the University of Chicago and Cornell revealed a technique to "sew" two patches of crystals seamlessly together at the atomic level to create atomically-thin fabrics.

The team wanted to do this by stitching different fabric-like, three-atom-thick crystals. "Usually these are grown in stages under very different conditions; grow one material first, stop the growth, change the condition, and start it again to grow another material," said Jiwoong Park, professor of chemistry in the James Franck Institute and the Institute for Molecular Engineering and a lead author on the study.

Instead, they developed a new process to find the perfect window that would work for both materials in a constant environment, so they could grow the entire crystal in a single session.

The resulting single-layer materials are the most perfectly aligned ever grown, Park said. The gentler transition meant that at the points where the two lattices meet, one lattice stretches or grows to meet the other-instead of leaving holes or other defects.

The atomic seams are so tight, in fact, that when they looked up close using scanning electron microscopes, they saw that the larger of the two materials puckers a little around the joint.

They decided to test its performance in one of the most widely used electronic devices: a diode. Two different kinds of material are joined, and electrons are supposed to be able to flow one way through the "fabric," but not the other.

The diode lit up. "It was exciting to see these three-atom-thick LEDs glowing. We saw excellent performance-the best known for these types of materials," said Saien Xie, a graduate student and first author on the paper.

The discovery opens up some interesting ideas for electronics. Devices like LEDs are currently stacked in layers-3D versus 2D, and are usually on a rigid surface. But Park said the new technique could open up new configurations, like flexible LEDs or atoms-thick 2D circuits that work both horizontally and laterally.

He also noted that the stretching and compressing changed the optical properties-the color-of the crystals due to the quantum mechanical effects. This suggests potential for light sensors and LEDs that could be tuned to different colors, for example, or strain-sensing fabrics that change color as they're stretched.

"This is so unknown that we don't even know all the possibilities it holds yet," Park said. "Even two years ago it would have been unimaginable."


Related Links
University of Chicago
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Solar-to-hydrogen conversion: Nanostructuring increases efficiency of metal-free photocatalysts by factor 11
Berlin, Germany (SPX) Mar 06, 2018
One of the major challenges of the energy transition is to supply energy even when the sun is not shining. Hydrogen production by splitting water with the help of sunlight could offer a solution. Hydrogen is a good energy storage medium and can be used in many ways. However, water does not simply split by itself. Catalysts are needed, for instance Platinum, which is rare and expensive. Research teams the world over are looking for more economical alternatives. Now a team headed by Dr. Tristan Peti ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Belgium distributes iodine pills in case of nuclear accident

At the UN, a diplomatic dance decides the fate of nations

New evidence of nuclear fuel releases found at Fukushima

Venezuela's woes spread to zoos as animals feed on each other

SOLAR DAILY
Why Russia is one step ahead of US Army's plans for future GPS

Europe claims 100 million users for Galileo satnav system

Airbus selected by ESA for EGNOS V3 program

Pentagon probes fitness-app use after map shows sensitive sites

SOLAR DAILY
Capturing brain signals with soft electronics

Scientists find world's oldest figural tattoos on Egyptian mummies

Seeing the brain's electrical activity

Buried at the stake: Underwater burial site yields skulls on poles

SOLAR DAILY
India's endangered lion population increases to 600

Study suggests dogs understand objects they smell

Hummingbirds make cricket sounds at frequencies outside avian hearing range

Shipments of protected African species to Asia soar: study

SOLAR DAILY
DARPA Names Researchers Working to Halt Outbreaks in 60 Days or Less

China confirms first human case of H7N4 bird flu

UV light can kill airborne flu virus, study finds

Playing 20 Questions with Bacteria to Distinguish Harmless Organisms from Pathogens

SOLAR DAILY
China anti-graft drive sees 100 top officials tried in five years

Naps and noodle talk at Chinese parliament term limit 'debate'

China signals hardened stance on Hong Kong, Taiwan

US journalists fear China detained their families

SOLAR DAILY
Off West Africa, navies team up in fight against piracy

India seeks custody of fugitive arrested in Hong Kong

Vietnam cops seize $2.5 mn heroin in China border drug bust

The roots of Italian mafia lie in the lemon industry, new research suggests

SOLAR DAILY








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.