Medical and Hospital News  
TECH SPACE
Researchers use nature's weaving formula to engineer advanced functional materials
by Staff Writers
Sydney, Australia (SPX) Jan 13, 2017


Periosteum is a tissue fabric layer on the outside of bone, as seen in the upper diagonal segment of the tissue image volume. The natural weave of elastin (green) and collagen (yellow) are evident when viewed under the microscope. Elastin gives periosteum its stretchy properties and collagen imparts toughness. Muscle is organized into fiber bundles, observed as round structures in the lower diagonal segment of the tissue image volume. The volume is approximately 200 x 200 microns (width x height) x 25 microns deep. Image courtesy Professor Melissa Knothe Tate.

For the first time, UNSW biomedical engineers have woven a 'smart' fabric that mimics the sophisticated and complex properties of one nature's ingenious materials, the bone tissue periosteum.

Having achieved proof of concept, the researchers are now ready to produce fabric prototypes for a range of advanced functional materials that could transform the medical, safety and transport sectors. Patents for the innovation are pending in Australia, the United States and Europe.

Potential future applications range from protective suits that stiffen under high impact for skiers, racing-car drivers and astronauts, through to 'intelligent' compression bandages for deep-vein thrombosis that respond to the wearer's movement and safer steel-belt radial tyres.

The research is published this week in Nature's Scientific Reports.

Many animal and plant tissues exhibit 'smart' and adaptive properties. One such material is the periosteum, a soft tissue sleeve that envelops most bony surfaces in the body. The complex arrangement of collagen, elastin and other structural proteins gives periosteum amazing resilience and provides bones with added strength under high impact loads.

Until now, a lack of scalable 'bottom-up' approaches by researchers has stymied their ability to use smart tissues to create advanced functional materials.

UNSW's Paul Trainor Chair of Biomedical Engineering, Professor Melissa Knothe Tate, said her team had for the first time mapped the complex tissue architectures of the periosteum, visualised them in 3D on a computer, scaled up the key components and produced prototypes using weaving loom technology.

"The result is a series of textile swatch prototypes that mimic periosteum's smart stress-strain properties. We have also demonstrated the feasibility of using this technique to test other fibres to produce a whole range of new textiles," Professor Knothe Tate said.

In order to understand the functional capacity of the periosteum, the team used an incredibly high fidelity imaging system to investigate and map its architecture.

"We then tested the feasibility of rendering periosteum's natural tissue weaves using computer-aided design software," Professor Knothe Tate said.

The computer modelling allowed the researchers to scale up nature's architectural patterns to weave periosteum-inspired, multidimensional fabrics using a state-of-the-art computer-controlled jacquard loom. The loom is known as the original rudimentary computer, first unveiled in 1801.

"The challenge with using collagen and elastin is their fibres, that are too small to fit into the loom. So we used elastic material that mimics elastin and silk that mimics collagen," Professor Knothe Tate said.

In a first test of the scaled-up tissue weaving concept, a series of textile swatch prototypes were woven, using specific combinations of collagen and elastin in a twill pattern designed to mirror periosteum's weave. Mechanical testing of the swatches showed they exhibited similar properties found in periosteum's natural collagen and elastin weave.

First author and biomedical engineering PhD candidate, Joanna Ng, said the technique had significant implications for the development of next-generation advanced materials and mechanically functional textiles.

While the materials produced by the jacquard loom have potential manufacturing applications - one tyremaker believes a titanium weave could spawn a new generation of thinner, stronger and safer steel-belt radials - the UNSW team is ultimately focused on the machine's human potential.

"Our longer term goal is to weave biological tissues - essentially human body parts - in the lab to replace and repair our failing joints that reflect the biology, architecture and mechanical properties of the periosteum," Ms Ng said.

An NHMRC development grant received in November will allow the team to take its research to the next phase. The researchers will work with the Cleveland Clinic and the University of Sydney's Professor Tony Weiss to develop and commercialise prototype bone implants for pre-clinical research, using the 'smart' technology, within three years.


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of New South Wales
Space Technology News - Applications and Research






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Researchers design one of strongest, lightest materials known
Boston MA (SPX) Jan 10, 2017
A team of researchers at MIT has designed one of the strongest lightweight materials known, by compressing and fusing flakes of graphene, a two-dimensional form of carbon. The new material, a sponge-like configuration with a density of just 5 percent, can have a strength 10 times that of steel. In its two-dimensional form, graphene is thought to be the strongest of all known materials. But ... read more


TECH SPACE
Memory of lost Cyprus home haunts three generations

Six climbers die of cold climbing Guatemala volcano

Debt traps threaten Nepal quake victims

Rebuild hearts as well as homes, pope tells quake victims

TECH SPACE
China to offer global satellite navigation service by 2020

Austrian cows swap bells from 'hell' for GPS

Russia, China Making Progress in Synchronization of GLONASS, BeiDou Systems

Alpha Defence Company To Make Navigation Satellites For ISRO

TECH SPACE
Hair today, hungover tomorrow as young Japanese come of age

New study finds evolution of brain and tooth size were not linked in humans

Ancient DNA can both diminish and defend modern minds

Archaeologists: Chaco Canyon inhabitants likely relied on imported food

TECH SPACE
Rusty patched bumble bee listed as endangered species

Routes of migratory birds follow today's peaks in resources

'Drunken walk' math helps explain ecological invasions

Birds with big bills spend more time keeping warm

TECH SPACE
Study: Retroviruses are nearly 500 million years old

Retroviruses 'almost half a billion years old'

Zimbabwe bans street food over typhoid, cholera fears

Why odds are against a large Zika outbreak in the US

TECH SPACE
China graft drive has punished 1.2 million: watchdog

Hong Kong's former leader abused power: prosecution

China to punish two top anti-corruption officials: Xinhua

Pro-democracy Hong Kong lawmaker condemns 'violent attacks'

TECH SPACE
TECH SPACE
Property and credit booms stablise China growth









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.