Subscribe free to our newsletters via your
. Medical and Hospital News .




SOLAR DAILY
Revolutionary solar cells double as lasers
by Staff Writers
Cambridge, UK (SPX) Apr 01, 2014


This is an image of the laboratory in which the research was conducted. Image courtesy Winton Programme for the Physics of Sustainability.

Commercial silicon-based solar cells - such as those seen on the roofs of houses across the country - operate at about 20% efficiency for converting the Sun's rays into electrical energy. It's taken over 20 years to achieve that rate of efficiency.

A relatively new type of solar cell based on a perovskite material - named for scientist Lev Perovski, who first discovered materials with this structure in the Ural Mountains in the 19th century - was recently pioneered by an Oxford research team led by Professor Henry Snaith.

Perovskite solar cells, the source of huge excitement in the research community, already lie just a fraction behind commercial silicon, having reached a remarkable 17% efficiency after a mere two years of research - transforming prospects for cheap large-area solar energy generation.

Now, researchers from Professor Sir Richard Friend's group at Cambridge's Cavendish Laboratory - working with Snaith's Oxford group - have demonstrated that perovskite cells excel not just at absorbing light but also at emitting it. The new findings, recently published online in the Journal of Physical Chemistry Letters [doi 10.1021/jz500528], show that these 'wonder cells' can also produce cheap lasers.

By sandwiching a thin layer of the lead halide perovskite between two mirrors, the team produced an optically driven laser which proves these cells "show very efficient luminescence" - with up to 70% of absorbed light re-emitted.

The researchers point to the fundamental relationship, first established by Shockley and Queisser in 1961, between the generation of electrical charges following light absorption and the process of 'recombination' of these charges to emit light.

Essentially, if a material is good at converting light to electricity, then it will be good at converting electricity to light. The lasing properties in these materials raise expectations for even higher solar cell efficiencies, say the Oxbridge team, which - given that perovskite cells are about to overtake commercial cells in terms of efficiency after just two years of development - is a thrilling prospect.

"This first demonstration of lasing in these cheap solution-processed semiconductors opens up a range of new applications," said lead author Dr Felix Deschler of the Cavendish Laboratory. "Our findings demonstrate potential uses for this material in telecommunications and for light emitting devices."

Most commercial solar cell materials need expensive processing to achieve a very low level of impurities before they show good luminescence and performance. Surprisingly these new materials work well even when very simply prepared as thin films using cheap scalable solution processing.

The researchers found that upon light absorption in the perovskite two charges (electron and hole) are formed very quickly - within 1 picosecond - but then take anywhere up to a few microseconds to recombine. This is long enough for chemical defects to have ceased the light emission in most other semiconductors, such as silicon or gallium arsenide.

"These long carrier lifetimes together with exceptionally high luminescence are unprecedented in such simply prepared inorganic semiconductors," said Dr Sam Stranks, co-author from the Oxford University team.

"We were surprised to find such high luminescence efficiency in such easily prepared materials. This has great implications for improvements in solar cell efficiency," said Michael Price, co-author from the group in Cambridge.

Added Snaith: "This luminescent behaviour is an excellent test for solar cell performance - poorer luminescence (as in amorphous silicon solar cells) reduces both the quantum efficiency (current collected) and also the cell voltage."

Scientists say that this new paper sets expectations for yet higher solar cell performance from this class of perovskite semiconductors. Solar cells are being scaled up for commercial deployment by the Oxford spin-out, Oxford PV Ltd. The efficient luminescence itself may lead to other exciting applications with much broader commercial prospects - a big challenge that the Oxford and Cambridge teams have identified is to construct an electrically driven laser.

.


Related Links
University of Cambridge
All About Solar Energy at SolarDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





SOLAR DAILY
Managing renewables intelligently
Kassel, Germany (SPX) Mar 27, 2014
Although more and more of our electrical energy is coming from sources where supply is variable - whether from wind turbines, solar parks or biomass facilities - grid structures, industry and private households alike are not yet prepared to deal with the inevitable fluctuations. Smart energy management systems are the way to put robust supply networks in place and to ensure that renewables are h ... read more


SOLAR DAILY
Malaysia in uncharted territory on MH370 crash probe

Fewer missing, but questions grow over US landslide

Thai satellite spots 300 objects in jet search

MH370 search back on as weather improves

SOLAR DAILY
LockMart Taps General Dynamics For Network Element On GPS 3 Birds

First GLONASS satellite in 2014 put in orbit

Astro Aerospace Delivers Antennas For Next-Gen GPS III Satellites 3 through 6

Exelis completes transmitter assemblies for first GPS III satellite payload

SOLAR DAILY
Eyes are windows to the soul -- and evolution

New stratigraphic research makes Little Foot the oldest complete Australopithecus

Stirring the simmering 'designer baby' pot

Empathy chimpanzees offer is key to understanding human engagement

SOLAR DAILY
Bighorn sheep went extinct on desert island in Gulf of California

Tiger killing show for Chinese rich and powerful: report

Kenya insists fight against poachers not lost

First evidence of plants evolving weaponry to compete in the struggle for selection

SOLAR DAILY
Iraq reports first suspected polio case since 2000

Guinea confirms Ebola as source of deadly epidemic

Climate Conditions Help Forecast Meningitis Outbreaks

Two-year-old Cambodian girl dies of bird flu

SOLAR DAILY
China earthquake activist freed after five years: lawyer

Wukan protest leader flees China, seeks US asylum

Wukan protest leader flees China, seeks US aslyum: report

China, world's top executioner, defends death penalty

SOLAR DAILY
Facebook announces steps to stop illegal gun sales

French navy arrests pirates suspected of oil tanker attack

Mexican vigilantes accuse army of killing four

Gunmen kill two soldiers in troubled Mexican state

SOLAR DAILY
Bank of China 2013 net profit up 12 percent

Dagong chief says credit ratings need 'Chinese wisdom'

Some debt defaults 'healthy' for China market: central bank

China's politically-sensitive yuan falls after reform




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.