Medical and Hospital News  
IRON AND ICE
Rosetta's First Peek at the Comet's Dark Side
by Staff Writers
Paris (ESA) Oct 05, 2015


Image of the southern polar regions of comet 67P/Churyumov-Gerasimenkotaken was taken by Rosetta's Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) on September 29, 2014, when the comet was still experiencing the long southern winter.

Since its arrival at comet 67P/Churyumov-Gerasimenko, the European Space Agency's Rosetta spacecraft has been surveying the surface and the environment of this curiously shaped body. But for a long time, a portion of the nucleus - the dark, cold regions around the comet's south pole - remained inaccessible to almost all instruments on the spacecraft.

Due to a combination of its double-lobed shape and the inclination of its rotation axis, Rosetta's comet has a very peculiar seasonal pattern over its 6.5-year-long orbit. Seasons are distributed very unevenly between the two hemispheres. Each hemisphere comprise parts of both comet lobes and the "neck."

For most of the comet's orbit, the northern hemisphere experiences a very long summer, lasting over 5.5 years, while the southern hemisphere undergoes a long, dark and cold winter. However, a few months before the comet reaches perihelion - the closest point to the sun along its orbit - the situation changes, and the southern hemisphere transitions to a brief and very hot summer.

When Rosetta arrived at 67P/C-G in August 2014, the comet was still experiencing its long summer in the northern hemisphere, and regions on the southern hemisphere received very little sunlight. Moreover, a large part of this hemisphere, close to the comet's south pole, was in polar night and had been in total darkness for almost five years.

With no direct illumination from the sun, these regions could not be imaged with Rosetta's OSIRIS (the Optical, Spectroscopic, and Infrared Remote Imaging System) science camera, or its Visible, InfraRed and Thermal Imaging Spectrometer (VIRTIS). For the first several months after Rosetta's arrival at the comet, only one instrument on the spacecraft could observe and characterize the cold southern pole of 67P/C-G: the Microwave Instrument for Rosetta Orbiter (MIRO).

In a paper accepted for publication in the journal Astronomy and Astrophysics, scientists report on the data collected by MIRO over these regions between August and October 2014.

"We observed the 'dark side' of the comet with MIRO on many occasions after Rosetta's arrival at 67P/C-G, and these unique data are telling us something very intriguing about the material just below its surface," said Mathieu Choukroun from NASA's Jet Propulsion Laboratory (JPL), Pasadena, California, lead author of the study.

Observing the comet's southern polar regions, Choukroun and colleagues found significant differences between the data collected with MIRO's millimeter and sub-millimeter wavelength channels. These differences might point to the presence of large amounts of ice within the first few tens of centimeters below the surface of these regions.

"Surprisingly, the thermal and electrical properties around the comet's south pole are quite different than what is found elsewhere on the nucleus," said Choukroun. "It appears that either the surface material or the material that's a few tens of centimeters below it is extremely transparent, and could consist mostly of water ice or carbon-dioxide ice."

The difference between the surface and subsurface composition of this part of the nucleus and that found elsewhere might originate in the comet's peculiar cycle of seasons. One of the possible explanations is that water and other gases that were released during the comet's previous perihelion, when the southern hemisphere was the most illuminated portion of the nucleus. The water condensed again and precipitated on the surface after the season changed and the southern hemisphere plunged again into its long and cold winter.

These are, however, preliminary results, because the analysis depends on the detailed shape of the nucleus. At the time the measurements were made, the shape of the dark, polar region was not known with great accuracy.

"We plan to revisit the MIRO data using an updated version of the shape model, to verify these early results and refine the interpretation of the measurements," added Choukroun.

Rosetta scientists will be testing these and other possible scenarios using data that were collected in the subsequent months, leading to the comet's perihelion, which took place on Aug. 13, 2015 and beyond.

In May 2015, the seasons changed on 67P/C-G and the brief, hot southern summer, which will last until early 2016, began. As the formerly dark southern polar regions started to receive more sunlight, it has been possible to observe them with other instruments on Rosetta, and the combination of all data might eventually disclose the origin of their curious composition.

"In the past few months, Rosetta has flown over the southern polar regions on several occasions, starting to collect data from this part of the comet after summer began there," said Matt Taylor, ESA Rosetta project scientist. "At the beginning of the southern summer, we had a paucity of observations in these regions as Rosetta's trajectory focused on the northern hemisphere due to ongoing communication with the lander, Philae. However, closer to perihelion we were able to begin observing the south."

Rosetta is currently on an excursion out to about 930 miles (1,500 kilometers) from the nucleus to study the comet's environment at large. But the spacecraft will soon come closer to the comet, focusing on full orbits to compare the northern and southern hemispheres, as well as some slower passes in the south to maximize observations there. In addition, as activity will start to wane later this year, the team hopes to get closer to the nucleus and gain higher-resolution observations of the surface.

"First, we observed these dark regions with MIRO, the only instrument able to do so at the time, and we tried to interpret these unique data. Now, as these regions became warmer and brighter around perihelion, we can observe them with other instruments, too."

Mark Hofstadter, MIRO principal investigator at JPL, adds, "We hope that, by combining data from all these instruments, we will be able to confirm whether or not the south pole had a different composition and whether or not it is changing seasonally."

The MIRO instrument is a small, lightweight spectrometer that can map the abundance, temperature and velocity of cometary water vapor and other molecules that the nucleus releases. It can also measure the temperature up to about one inch (three centimeters) below the surface of the comet's nucleus. One reason the subsurface temperature is important is that the observed gases likely come from sublimating ices beneath the surface. By combining information on the gas and the subsurface, MIRO is able to study this process in detail.

Comets are time capsules containing primitive material left over from the epoch when the sun and its planets formed. Rosetta is the first spacecraft to witness at close proximity how a comet changes as it is subjected to the increasing intensity of the sun's radiation. Observations will help scientists learn more about the origin and evolution of our solar system and the role comets may have played in the formation of planets.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Rosetta at ESA
Asteroid and Comet Mission News, Science and Technology






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
IRON AND ICE
How Rosetta's comet got its shape
Paris (ESA) Sep 29, 2015
Two comets collided at low speed in the early Solar System to give rise to the distinctive 'rubber duck' shape of Comet 67P/Churyumov-Gerasimenko, say Rosetta scientists. The origin of the comet's double-lobed form has been a key question since Rosetta first revealed its surprising shape in July 2014. Two leading ideas emerged: did two comets merge or did localised erosion of a single object for ... read more


IRON AND ICE
China leader throws support behind UN peacekeeping

Taking greater role, China leader pledges $2 bln to poor

No relief for Nepal quake victims as $4.1bn fund in limbo

Japan commits $1.5bn for Middle East refugees, peace

IRON AND ICE
Galileo satellites handed over to operator

New sports technology provides a GPS alternative

Russia, Brazil Sign Contract for Glonass Ground Measuring Station

DARPA taps Rockwell Collins for GPS backup technologies

IRON AND ICE
2-million-year-old fossils reveal hearing abilities of early humans

How to find out about the human mind through stone

Targeted Electrical Stimulation of the Brain Shows Promise as a Memory Aid

Scientists report earlier date of shift in human ancestors' diet

IRON AND ICE
Sea slug exhibits same foraging abilities as terrestrial insects

DNA sequencing improved by slowing down

58,046 fruit flies shed light on 100-year old evolutionary question

New species of deadly snake discovered in Australia

IRON AND ICE
Chip-based technology enables reliable direct detection of Ebola virus

Bacteria in ancient flea may be ancestor of the Black Death

WHO urges preventative ARVs for those at high risk for HIV

New clues on the history of the smallpox vaccine virus

IRON AND ICE
Protesters gather in Hong Kong a year since mass rallies

China puts two democracy activists on trial amid crackdown

China to increase Communist presence in charities, trade unions

China champions women at UN but record criticized

IRON AND ICE
Chinese 'thief' swallowed diamond, tried to flee Thailand

Army's role questioned in missing Mexican students case

IRON AND ICE
China manufacturing continues to shrink: official data

China industrial profits fall at sharpest rate in four years

China's Xi confident of 'healthy' economic growth

China says to cooperate with US on graft, money laundering









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.