Medical and Hospital News  
CHIP TECH
Russian scientists develop long-range secure quantum comms system
by Staff Writers
Saint Petersburg, Russia (SPX) Apr 18, 2016


Experimental device of quantum cryptography system. Image courtesy ITMO University. For a larger version of this image please go here.

A group of scientists from ITMO University in Saint Petersburg, Russia has developed a novel approach to the construction of quantum communication systems for secure data exchange. The experimental device based on the results of the research is capable of transmitting single-photon quantum signals across distances of 250 kilometers or more, which is on par with other cutting edge analogues. The research paper was published in the Optics Express journal.

Information security is becoming more and more of a critical issue not only for large companies, banks and defense enterprises, but even for small businesses and individual users. However, the data encryption algorithms we currently use for protecting our data are imperfect - in the long-term, their logic can be cracked. Regardless of how complex and intricate the algorithm is, getting round it is just the matter of time.

Contrary to algorithm-based encryption, systems that protect information by making use of the fundamental laws of quantum physics, can make data transmission completely immune to hacker attacks in the future. Information in a quantum channel is carried by single photons that change irreversibly once an eavesdropper attempts to intercept them. Therefore, the legitimate users will instantly know about any kind of intervention.

Researchers from the Quantum Information Centre of the International Institute of Photonics and Optical Information Technology at ITMO University along with colleagues from Heriot-Watt University in Edinburgh have devised a new way to effectively generate and distribute quantum bits.

This is the first system in Russia, which can compete with the best existing analogues and makes it possible to share quantum signals via optical fiber across 250 kilometers in distance.

"To transmit quantum signals, we use the so-called side frequencies," says Artur Gleim, head of the Quantum Information Centre at ITMO University, "This unique approach gives us a number of advantages, such as considerable simplification of the device architecture and large pass-through capacity of the quantum channel. In terms of bit rate and operating distance our system is comparable to absolute champions in the field of quantum communications."

The very possibility of stable transmission of quantum signals through fiber optical channels is instrumental to subsequent integration of quantum key distribution systems that will be used to secure the useful data.

According to Robert Collins, research associate at the Institute of Photonics and Quantum Sciences at Heriot-Watt University and one of the authors of the study, the work may become a big pivot point for the whole field of quantum communication and cryptography: "Down the track, this new approach can enable smooth coexistence of numerous data streams with different wavelengths in one single optical cable. On top of it, these quantum streams can be fed into the already existing fiber optic lines along with conventional communications."

In order to encode quantum bits in the system, laser radiation is directed into a special device called the electro-optical phase modulator. Inside the modulator the central carrier wave emitted by the laser is split into several independent waves. After the signal is transmitted through the cable, the same splitting occurs on the receiver end.

Depending on the relative phase shift of the waves generated by the sender and the receiver, the waves will either enhance or cancel each other. This pattern generated by overlapping wave phases is then converted into the combination of binary digits, 1 and 0, which serves to compile a quantum key.

Importantly, the scientists have achieved high stability of the relative phase shifts of the signal in the system.

"All waves undergo random changes while passing through the fiber," explains Oleg Bannik, one of the authors of the study and researcher at Quantum Information Centre, "But these changes are always identical and get smoothed over during the additional run through the receiver's modulator. In the end, the receiver observes the same combination as the sender."

Now the researchers are on the mission to create a full-fledged quantum cryptographic system, which will generate and distribute quantum keys and transmit useful data simultaneously.

Research paper: Secure polarization-independent subcarrier quantum key distribution in optical fiber channel using BB84 protocol with a strong reference


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
ITMO University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CHIP TECH
Penn engineers develop first transistors made entirely of nanocrystal 'inks'
Philadelphia PA (SPX) Apr 14, 2016
The transistor is the most fundamental building block of electronics, used to build circuits capable of amplifying electrical signals or switching them between the 0s and 1s at the heart of digital computation. Transistor fabrication is a highly complex process, however, requiring high-temperature, high-vacuum equipment. Now, University of Pennsylvania engineers have shown a new approach f ... read more


CHIP TECH
Defying radiation, elderly residents cling on in Chernobyl

Ukraine to mark 30 years since Chernobyl shook the world

Japan battles to care for 100,000 evacuees after quake

Social networks offer comfort, confusion in Japan quake

CHIP TECH
Satellite touchdown in run up to Galileo launch

Russian Glonass Satellite Scheduled for Launch on May 21

Glonass navigation system's ground infrastructure successfully completed

China launches 22nd BeiDou navigation satellite

CHIP TECH
Are humans the new supercomputer

Brain observed filing memories during sleep

Study: Some words sound farther away than others

Study: Electrical brain stimulation enhances creativity

CHIP TECH
Tracking elephants as new railway cuts Kenya

Madagascar yields three new primate species

Research reveals trend in bird-shape evolution on islands

Uncovering the evolution of queen-worker differences

CHIP TECH
Research finds Zika 'significantly changed' since 1947

China detained more than 200 over vaccine scandal

Human genetic research with Chinese characteristics

Co-evolving antivirals aim to keep ahead of fast-changing viruses

CHIP TECH
China sets death penalty threshold in graft cases

Twitter's new China head wants to 'work together' with state media

More Western art on shopping list for Chinese tycoon Liu

China revokes rights lawyer's licence over criminal conviction

CHIP TECH
Mexican soldiers detained as torture video surfaces

Pirates abduct six Turkish crew off Nigeria: navy

US, Hong Kong bust huge smuggling operation

10 gang suspects killed in northern Mexico

CHIP TECH
China posts slowest quarterly growth on record: govt

Alibaba financial affiliate valued at $60 bn

China GDP growth slows to 6.7% in first quarter: govt

Dark economic cloud over IMF-World Bank meeting









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.