Free Newsletters - Space - Defense - Environment - Energy
..
. Medical and Hospital News .




TECH SPACE
SOFS Take to Water
by Lynn Yarris for Berkeley News
Berkeley CA (SPX) Dec 17, 2013


Yi Liu at the Molecular Foundry. (Photo by Roy Kaltschmidt). For a larger version of this image please go here.

Supramolecular chemistry, aka chemistry beyond the molecule, in which molecules and molecular complexes are held together by non-covalent bonds, is just beginning to come into its own with the emergence of nanotechnology. Metal-organic frameworks (MOFs) are commanding much of the attention because of their appetite for greenhouse gases, but a new player has joined the field - supramolecular organic frameworks (SOFs).

Researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) have unveiled the first two-dimensional SOFs that self-assemble in solution, an important breakthrough that holds implications for sensing and separation technologies, energy sciences, and, perhaps most importantly, biomimetics.

"We've demonstrated the first soluble single-layer 2D honeycomb SOF that combines the ordering and porous features of MOFs with the solubility of supramolecular polymers," says Yi Liu, a chemist with Berkeley Lab's Materials Sciences Division. "The results prove that we can exercise precise control of dimensionality within structures through a solution-based supramolecular approach, which paves the way for the assembly of more advanced architectures that can be processed in solution."

Liu, who oversees the supramolecular electronics research group at Berkeley Lab's Molecular Foundry, a DOE national nanoscience user facility, is one of three corresponding authors of a paper describing this research in the Journal of the American Chemical Society (JACS).

The paper is titled "Toward a Single-Layer Two-Dimensional Honeycomb Supramolecular Organic Framework in Water." The other corresponding authors are Xin Zhao and Zhan-Ting Li, of China's Shanghai Institute of Organic Chemistry and Fudan University.

Traditional molecular chemistry involves the strong covalent bonds formed by the sharing or exchange of electrons between the atoms that make up a molecular system. Supramolecular chemistry involves systems that are held together by a multitude of weaker, non-covalent connections, such as hydrogen bonds and electrostatic and Van der Waals forces. Nature uses supramolecular chemistry to form the double-helix of DNA or to fold proteins.

For nanotechnology, single-layers of 2D structurally ordered materials - along the lines of graphene - could fill a great many needs but the key is to process them in solution.

"Solution-based processing allows for mass production and reduced manufacturing costs, and is an important step for transferring materials to a dry state without losing their structural integrity," Yi says.

"Solution-based processing also allows for bio-related applications such as biomimetic sensing, where the framework structure is advantageous for the capturing of guest molecules and the amplification of chemical signals."

However, the self-assembly of well-defined 2D supramolecular systems polymers in solution has been a challenge because such polymers tend to precipitate out of solution, making them difficult to manipulate and characterize.

To meet this challenge, Yi and his collaborators used a combination of self-assembling tripods and marocycle rings to form a porous framework with honeycomb periodicity, similar to that of a MOF, but which remains rigid in solution. Equipping the tripods with bulky hydrophilic groups that resist stacking preserved the solubility and single-layer 2D architecture of the framework.

"That our framework is held together by reversible, non-covalent supramolecular interactions ensures good solubility in water," Li says. "The precise dimensional control of our solution-based processing facilitates the structural and chemical customization of our frameworks."

The tripods of these SOFs were made from aromatic bipyridine molecules whose trio of struts or arms were interlocked with the struts of their neighboring molecules through the macrocycles, which were made from cucurbituril molecules. The molecules used in this study were proof-of-principle starters. Other molecules for the struts could be employed in the future for the design of similar or more complex architectures.

The 2D single-layer structures of these first SOFs were characterized at Berkeley Lab's Advanced Light Source, another DOE national user facility, using small angle X-ray scattering (SAXS) technologies at beamlines 12.3.1 and 7.3.3.

Yi and his collaborators at the Molecular Foundry and in Shanghai are now working to create soluble SOFs in 3D. In addition to the corresponding authors, other authors of the JACS paper were Kang-Da Zhang, Jia Tian, David Hanifi, Yuebiao Zhang, Andrew Chi-Hau Sue, Tian-You Zhou and Lei Zhang.

.


Related Links
Lawrence Berkeley National Laboratory
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
Programming smart molecules
Cambridge, MA (SPX) Dec 17, 2013
Computer scientists at the Harvard School of Engineering and Applied Sciences (SEAS) and the Wyss Institute for Biologically Inspired Engineering at Harvard University have joined forces to put powerful probabilistic reasoning algorithms in the hands of bioengineers. In a new paper presented at the Neural Information Processing Systems conference on December 7, Ryan P. Adams and Nils Napp ... read more


TECH SPACE
Deloitte aids international humanitarian organizations

Desperate Syrians find little comfort in new homes

Japan to spend $970 mn on nuclear soil store: report

Kerry to tour typhoon-hit Philippines, Vietnam

TECH SPACE
Galileo achieves its first airborne tracking

'Smart' wig navigates by GPS, monitors brainwaves

CIA, Pentagon trying to hinder construction of GLONASS stations in US

GPS 3 Prototype Communicates With GPS Constellation

TECH SPACE
Simple mathematical formula describes human struggles

Discovery of 1.4 million-year-old fossil human hand bone closes human evolution gap

Study: Young people in Canada prefer urban cores to suburban living

Oldest hominin DNA sequenced

TECH SPACE
French customs announce major ivory haul

ASU researchers discover chameleons use colorful language to communicate

Hydrogen-powered invasion

The garden microbe with a sense of touch

TECH SPACE
Plague 'epidemic' kills 39 in Madagascar: government

Resistant flu virus keeps contagiousness

Hong Kong quarantines 19 people over second bird flu case

Spanish hospital to trial new HIV treatment

TECH SPACE
Human rights a matter for China, not US: Beijing

US urges China to free Nobel laureate

Stuffed toy wolf becomes anti-government symbol in Hong Kong

China bans shark fin soup from official receptions

TECH SPACE
Mexican military seeks to oust cartel from port

Spain jails six Somalis for piracy

Pirates kidnap two American sailors off Nigeria

Seaman Guard owner to fight arrest of ship's crew in India

TECH SPACE
Philippines sees high growth despite typhoon

China's holding of US debt tops $1.3 trillion

Walker's World: Merkel -- Reigning or ruling?

China outbound investment up 28.3% in 11 months




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement