Medical and Hospital News  
BIO FUEL
Scientists clarify light harvesting in green algae
by Staff Writers
Beijing, China (SPX) Nov 27, 2019

Structures of C2S2M2L2 and C2S2 -type PSII-LHCII supercomplex from a green algae

Algae are indispensable because they generate about 50% of primary organic matter and account for about 50% of all oxygen on Earth. They produce oxygen through oxygenic photosynthesis -a biological process that "harvests" light and turns it into chemical energy.

A new study by Chinese and Japanese researchers has now characterized the light-harvesting system of Chlamydomonas reinhardtii, a common unicellular green alga. This research enhances understanding of the molecular basis for efficient light harvesting as well as photoprotection in green algae under variable light conditions.

The study was conducted by Dr. LIU Zhenfeng's group from the Institute of Biophysics (IBP) of the Chinese Academy of Sciences and Dr. Jun Minagawa from Japan's National Institute for Basic Biology. Results were published online in Nature Plants on Nov. 25, 2019 in an article entitled "Structural insights into light harvesting for photosystem II in green algae."

Oxygenic photosynthesis in algae and plants relies on photosystem II (PSII) molecules and light-harvesting complex II (LHCII) molecules, and their associated supercomplexes, to convert light energy into chemical energy. For example, PSII catalyzes the splitting of water molecules into oxygen and protons. PSII also assembles with LHCII at the peripheral region to absorb photon energy efficiently.

C. reinhardtii has been an important model for photosynthesis research over the past few decades as well as a platform for the production of high-value products such as biofuel and pharmaceutical compounds. Its LHCII molecules join with PSII molecules to form the C2S2M2L2 supercomplex - the largest known algae or plant PSII-LHCII supercomplex, in addition to the smaller C2S2-type supercomplex.

The researchers solved the structures of both C2S2M2L2 and C2S2 by using cryo-electron microscopy (cryo-EM). They also deciphered in great detail the assembly mechanisms and energy transfer pathways of the two supercomplexes.

Their research shows that the LHCII trimer strongly associated with the PSII core (C) contains three distinct subunits, namely, LhcbM1, LhcbM2 and LhcbM3. Two special lipid molecules mediate the interactions between LhcbM1 and the PSII core antenna CP43.

Furthermore, they discovered that one pair of moderately associated LHCII trimers (M-LHCII) and an additional pair of loosely associated LHCII trimers (L-LHCII) attach at the peripheral region of the C2S2 supercomplex, leading to the formation of the C2S2M2L2 > supercomplex.

By analyzing the structure of C2S2M2L2 supercomplex, the scientists found that the minor antenna complexes CP29 and CP26 contain several green algae-specific regions that are absent in homologs from land plants. They discovered that these special regions on CP29 play a crucial role in linking L-LHCII and M-LHCII and stabilizing the resulting assembly, whereas those of CP26 strengthen its own interactions with S-LHCII (LHCII strongly-associated with PSII).

In addition, using quantitative analysis of chlorophyll-chlorophyll relationships, the team unraveled multiple energy transfer routes from L-LHCII, M-LHCII and S-LHCII to PSII, thus explaining the fundamental steps of the light-harvesting process in green algae.

Research paper


Related Links
Chinese Academy of Sciences Headquarters
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


BIO FUEL
Researchers design an improved pathway to carbon-neutral plastics
Toronto, Canada (SPX) Nov 21, 2019
Researchers from U of T Engineering and Caltech have designed a new and improved system for efficiently converting CO2, water, and renewable energy into ethylene - the precursor to a wide range of plastic products, from medical devices to synthetic fabrics - under neutral conditions. The device has the potential to offer a carbon-neutral pathway to a commonly used chemical while enhancing storage of waste carbon and excess renewable energy. "CO2 has low economic value, which reduces the incentive ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
NASA data helps assess landslide risk in Rohingya refugee camps

What felled the great Assyrian Empire? A Yale professor weighs in

Japan: safe to dump water from Fukushima nuclear disaster

Russia repatriates around 30 toddlers from Iraq

BIO FUEL
Russia to launch glass sphere into space before new year to obtain accurate Earth data

Lockheed Martin GPS Spatial Temporal Anti-Jam Receiver System to be integrated in F-35 modernization

GPS III Ground System Operations Contingency Program Nearing Operational Acceptance

UK should ditch plans for GPS to tival Galileo

BIO FUEL
Skull study suggests pre-humans weren't as bright as modern apes

Brain enlightens the origin of human hand's skill

Extinct giant ape directly linked to the living orangutan

Fossil suggests apes, old world monkeys moved in opposite directions from shared ancestor

BIO FUEL
China 'medicine' demand threatens world donkey population: report

A third of Africa's tropical flora threatened with extinction: study

Sumatran tiger kills Indonesian farmer, injures tourist

Fate of bigeye tuna in the balance in quota meet

BIO FUEL
Scientists close in on malaria vaccine

Novel marine bacteria could yield new antibiotics

Pig infected with African swine fever washes up in Taiwan

Two treated for deadly pneumonic plague in Beijing

BIO FUEL
Hong Kong democracy camp heads for stunning polls win

China releases video of UK consulate worker's confession

Hong Kong rights bill clears US Congress, heads to Trump

Furious China vows to 'fight back' after Congress backs HK democracy

BIO FUEL
Four sailors kidnapped by suspected pirates off Togo: navy

BIO FUEL








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.