. Medical and Hospital News .




NANO TECH
Scientists delve deeper into carbon nanotubes
by Belle Dume for Institute of Physics
London, UK (SPX) Feb 25, 2013


One, two, and three walls of carbon.

The outer walls of both double- and triple-walled carbon nanotubes (CNTs) protect the innermost tubes from interacting with their environment. That is the key finding of a study by researchers in the US, Germany and Japan, who have made the first detailed examination of triple-walled CNTs using resonant Raman spectroscopy. The protection afforded by the outer layer allows the tiny tubes to be studied in more detail than ever before, which could be a boon to those using CNTs to create new technologies.

A single-walled carbon nanotube (SWCNT) resembles a tiny drinking straw with a wall that is just one carbon atom thick. A double-walled carbon nanotube (DWCNT) consists of two concentric SWCNTs coupled together by weak Van der Waals interactions. The inner and outer tubes can either be semiconducting or metallic. However, because the outer tube is in direct contact with its environment, it can be difficult to obtain accurate information about its fundamental physical properties.

Third wall protects the second
To gain a better understanding of the outer tube in a DWCNT, Thomas Hirschmann and Paulo Araujo at the Massachusetts Institute of Technology and colleagues studied individual and bundled triple-walled carbon nanotubes (TWCNTs). A TWCNT can be thought of as a DWCNT wrapped around a SWCNT. The researchers found that the extra outer tube protects the two inner ones from interacting with their environment, thus allowing them to be studied more accurately. An unrolled TWCNT can be thought of as a trilayer graphene ribbon, and has all the outstanding electronic and mechanical properties that this carbon material boasts.

The team was led by MIT's Mildred Dresselhaus and included scientists from the University of Hamburg, the Nagaoka University of Technology and Shinshu University. The researchers used a very fast yet sensitive Raman spectrometer, which allowed them to detect and characterize the same individual TWCNT with different laser lines under identical experimental conditions. "Only a few groups in the world are equipped with such an instrument capable of characterizing individual CNTs in this way," said Hirschmann.

Wall-to-wall measurements
"The analyses allowed us to study fundamental properties such as intertube mechanical coupling, wall-to-wall (WtW) distance, metallicity and curvature-dependent intertube interactions," he explained. "Such knowledge will be of fundamental importance for technological applications that exploit these nanostructures."

The researchers characterized five individual TWCNTs in detail and found that the WtW distance between the inner two tubes in all the samples ranges from 0.323 to 0.337 nm. These values are larger than the WtW distance observed in previously studied DWCNTs (0.284-0.323 nm). The distances are also closer to the interlayer distance in graphene (0.335 nm).

"We also found that the intertube interactions affect innermost nanotubes differently, according to which metallicity they have, and that the elusive mechanical coupling between the 'radial breathing mode', or RBM, of concentric nanotubes does not exist, even for relatively short WtW distances of 0.323 nm," added Hirschmann. "This is an important finding and shows that, although the TWCNTs are hybrid systems, the tubes themselves are mostly independent of one another."

Wealth of information
The RBM is the most important spectroscopic signature of a CNT, the frequency of vibration of which is known to be inversely proportional to the tube diameter, he explained. These so-called first-order Raman features provide a wealth of information on the electronic and vibrational structure of these nanomaterials.

"Our analyses also shed more light on the Van der Waals forces mediating the interactions in concentric ordered CNTs, such as DWCNTs and TWCNTs," said Araujo. "These low-energy interactions are important for technology applications because they affect the electronic and vibrational properties of the tubes."

The team is now busy analysing shielding phenomena and intertube interaction effects in multi-walled carbon-nanotube systems. Here, intertube interactions not only affect the measured RBMs but also other Raman features. "One of our main goals is to find better conditions in which to grow CNTs by controlling interactions between nanotubes walls," said Hirschmann. "To this end, we are working closely with Yoong Ahm Kim and colleagues at Shinshu University, who are experts when it comes to synthesizing these nanomaterials."

The research is described in ACS Nano.

.


Related Links
Institute of Physics
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear

...





NANO TECH
Forging a new periodic table using nanostructures
Chicago IL (SPX) Feb 21, 2013
Northwestern University's Chad A. Mirkin, a world-renowned leader in nanotechnology research and its application, has developed a completely new set of building blocks that is based on nanoparticles and DNA. Using these tools, scientists will be able to build - from the bottom up, just as nature does - new and useful structures. Mirkin will discuss his research in a session titled "Nucle ... read more


NANO TECH
Rio meet focuses on using science to root out poverty

British PM sparks concern with aid budget proposals

Swiss Re posts 61% profit rise in 2012

Four guilty of manslaughter in Italy quake trial

NANO TECH
USAF Awards Lockheed Martin Contracts to Begin Work on Next Set of GPS III Satellites

Telit Offers COMBO 2G Chip For Multi Satellite Positioning Receiver

Boeing Awarded USAF Contract to Continue GPS Modernization

A system that improves the precision of GPS in cities by 90 percent

NANO TECH
High-tech brain is scientists' goal

How human language could have evolved from birdsong

Stay cool and live longer?

Zuckerberg, Brin join forces to extend life

NANO TECH
Stanford researchers develop tool for reading the minds of mice

Study: Chimps do puzzles for fun, not food

Most Earth species still unknown: Brazil expert

How a microbial biorefinery regulates genes

NANO TECH
Using transportation data to predict pandemics

A mighty fighting flu breakthrough

Study boosts link between flu vaccine, sleep disorder

China reports year's second fatal case of bird flu

NANO TECH
China turns to all-boys classes as girls progress

Hong Kong court hears landmark maid residency case

China ends Lunar New Year with molten metal showers

China party mouthpiece laments spoiled generation

NANO TECH
Ukraine to join NATO anti-piracy mission

16 gunmen killed in Thai military base attack: army

Japan police arrest mobster in Fukushima clean-up

Mexico scrambles to stem violence near capital

NANO TECH
Japan passes $142 billion stimulus budget

US science policy should focus on outcomes not efficiencies

China manufacturing growth falls in February

China ratings firm warns of global 'currency crisis'




The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement