Medical and Hospital News  
TECH SPACE
Scientists develop molecular code for melanin-like materials
by Staff Writers
New York NY (SPX) Jun 21, 2017


Polymeric pigments were produced by guided oxidation of peptide assemblies. Credit Matej Vakula, NYC

Scientists have long known that melanin - the pigments that give color to skin, hair and eyes - has numerous useful qualities, including providing protection from cancer-causing UV radiation and free radicals, but also electronic conductance, adhesiveness and the capacity to store energy.

To take advantage of these qualities, scientists across the City University of New York (CUNY) have developed a new approach for producing materials that not only mimic the properties of melanin, but also provide unprecedented control over expressing specific properties of the biopolymer, according to a paper published in the journal Science. The discovery could enable the development of cosmetic and biomedical products.

Unlike other biopolymers, such as DNA and proteins, where a direct link exists between the polymers' ordered structures and their properties, melanin is inherently disordered, so directly relating structure to function is not possible. As a result, researchers have been unable to fully exploit melanin's properties because the laboratory-based synthesis of melanin has been thwarted by the difficulty of engineering its disorderly molecular structure.

"We took advantage of simple versions of proteins - tripeptides, consisting of just three amino acids - to produce a range of molecular architectures with precisely controlled levels of order and disorder," said lead researcher Rein V. Ulijn, director of the Nanoscience Initiative at the Advanced Science Research Center (ASRC) at the Graduate Center, CUNY. "We were amazed to see that, upon oxidation of these peptide structures, polymeric pigments with a range of colors - from light beige to deep brown- were formed."

Subsequent, in-depth characterization of the approach demonstrated that further properties, such as UV absorbance and nanoscale morphology of the melanin-like materials, could also be systematically controlled by the amino acid sequence of the tripeptide.

"We found that the key to achieving polymers with controlled disorder is to start from systems that have variable order built in," said Ayala Lampel, a postdoctoral ASRC researcher and the paper's first author. "First, we figured out how the amino acid sequence of a set of tripeptides gives rise to differently ordered architectures. Next, we leveraged these ordered structures as templates for catalytic oxidation to form peptide pigments with a range of properties."

The findings published in Science build on previous research conducted by Ulijn, who is also the Albert Einstein Professor of Chemistry at Hunter College and a member of the biochemistry and chemistry doctoral faculty at the Graduate Center.

His lab will now turn its attention to further clarifying the chemical structures that form and expanding the resulting functionalities and properties of the various melanin-like materials they produce. The researchers are also pursuing commercialization of this new technology, which includes near-term possibilities in cosmetics and biomedicine.

Christopher J. Bettinger, a Carnegie Mellon University researcher who specializes in melanin applications in energy storage, collaborated with the ASRC team on the current work. Among the materials discovered, he found that two-dimensional, sheet-like polymers show significant charge-storage capacity.

"Expanding the compositional parameters of these peptides could substantially increase the utility of the resulting pigments, and this research can also help us better understand the structural property and functions of natural melanins," Bettinger said.

In addition to Ulijn, Lampel and Bettinger, the research team also included Scott A. McPhee, Tai-De Li and Rinat R. Abzalimov of the ASRC; Sunita Humagain, Hunter College and the Graduate Center; Steven G. Greenbaum and Barney Yoo, Hunter College; Hang-Ah Park, Carnegie Mellon University; Tell Tuttle and Gary G. Scott, University of Strathclyde; Doeke R. Hekstra, Harvard University; Pim W.J.M. Frederix, University of Groningen, The Netherlands; and Chunhua Hu, New York University.

Research paper

TECH SPACE
New waterproofing and antifouling materials developed by Swansea Scientists
Swansea UK (SPX) Jun 16, 2017
'Green' project led by Swansea scientists could replace more expensive and hazardous materials used for waterproofing and antifouling/fogging. New materials have been developed by scientists in the Energy Safety Research Institute (ESRI) at Swansea University which is nontoxic, economical and shows promise to replace more expensive and hazardous materials used for waterproofing and antifou ... read more

Related Links
CUNY Advanced Science Research Center
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Rescuers battle to reach victims of deadly Bangladesh landslides

Hundreds sick in food poisoning at Mosul displaced camp

Flower power: gardening as therapy in Poland

Philippine war refugees facing deadly health risks

TECH SPACE
Galileo grows: two more satellites join working constellation

GIS is a powerful tool that should be used with caution

Japan launches satellite in bid for super accurate GPS system

exactEarth Broadens Small Vessel Tracking Offering

TECH SPACE
In tense times, top conductor creates UN of orchestras

Czech cave dig reveals details of Neanderthal-human transition

Removal of aging cells could extend human life

Dating expert ages oldest modern human

TECH SPACE
Hong Kong launches ivory ban bill

Germany to welcome two giant pandas

Romania to ban wild animals in circuses

Tracking invasive species? Follow the people

TECH SPACE
Warmer climate threatens malaria spread in Ethiopia

Scientists fight mosquitoes, malaria with toxin-infused fungi

Cholera epidemic timeline

Toward an HIV cure: Pitt team develops test to detect hidden virus

TECH SPACE
China executives tied to Communist Party critic convicted

Hong Kong freedoms being eroded: Patten

Billionaire shakes China's elite with online theatrics

Backpacks, books and life jackets: Time for school in China

TECH SPACE
Golden Triangle narco-gangs churning out new highs, UN warns

UN counter-drug official kidnapped in Colombia: officials

Indian, Chinese navies rescue ship hijacked by Somali pirates

TECH SPACE








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.