Subscribe free to our newsletters via your
. Medical and Hospital News .




CARBON WORLDS
Scientists discover potential way to make graphene superconducting
by Staff Writers
Stanford CA (SPX) Mar 24, 2014


Adding calcium atoms (orange spheres) between graphene planes (blue honeycomb) creates a superconducting material called CaC6. Now a study at SLAC has shown for the first time that graphene is a key player in this superconductivity: Electrons scatter back and forth between the graphene and calcium layers, interact with natural vibrations in the material's atomic structure and pair up to conduct electricity without resistance. Image courtesy Greg Stewart/SLAC.

Scientists at the Department of Energy's SLAC National Accelerator Laboratory and Stanford University have discovered a potential way to make graphene - a single layer of carbon atoms with great promise for future electronics - superconducting, a state in which it would carry electricity with 100 percent efficiency.

Researchers used a beam of intense ultraviolet light to look deep into the electronic structure of a material made of alternating layers of graphene and calcium. While it's been known for nearly a decade that this combined material is superconducting, the new study offers the first compelling evidence that the graphene layers are instrumental in this process, a discovery that could transform the engineering of materials for nanoscale electronic devices.

"Our work points to a pathway to make graphene superconducting - something the scientific community has dreamed about for a long time, but failed to achieve," said Shuolong Yang, a graduate student at the Stanford Institute of Materials and Energy Sciences (SIMES) who led the research at SLAC's Stanford Synchrotron Radiation Lightsource (SSRL).

The researchers saw how electrons scatter back and forth between graphene and calcium, interact with natural vibrations in the material's atomic structure and pair up to conduct electricity without resistance. They reported their findings March 20 in Nature Communications.

Graphite Meets Calcium
Graphene, a single layer of carbon atoms arranged in a honeycomb pattern, is the thinnest and strongest known material and a great conductor of electricity, among other remarkable properties. Scientists hope to eventually use it to make very fast transistors, sensors and even transparent electrodes.

The classic way to make graphene is by peeling atomically thin sheets from a block of graphite, a form of pure carbon that's familiar as the lead in pencils. But scientists can also isolate these carbon sheets by chemically interweaving graphite with crystals of pure calcium. The result, known as calcium intercalated graphite or CaC6, consists of alternating one-atom-thick layers of graphene and calcium.

The discovery that CaC6 is superconducting set off a wave of excitement: Did this mean graphene could add superconductivity to its list of accomplishments? But in nearly a decade of trying, researchers were unable to tell whether CaC6's superconductivity came from the calcium layer, the graphene layer or both.

Observing Superconducting Electrons
For this study, samples of CaC6 were made at University College London and brought to SSRL for analysis.

"These are extremely difficult experiments," said Patrick Kirchmann, a staff scientist at SLAC and SIMES. But the purity of the sample combined with the high quality of the ultraviolet light beam allowed them to see deep into the material and distinguish what the electrons in each layer were doing, he said, revealing details of their behavior that had not been seen before.

"With this technique, we can show for the first time how the electrons living on the graphene planes actually superconduct," said SIMES graduate student Jonathan Sobota, who carried out the experiments with Yang. "The calcium layer also makes crucial contributions. Finally we think we understand the superconducting mechanism in this material."

Although applications of superconducting graphene are speculative and far in the future, the scientists said, they could include ultra-high frequency analog transistors, nanoscale sensors and electromechanical devices and quantum computing devices.

The research team was supervised by Zhi-Xun Shen, a professor at SLAC and Stanford and SLAC's advisor for science and technology, and included other researchers from SLAC, Stanford, Lawrence Berkeley National Laboratory and University College London. The work was supported by DOE's Office of Science, the Engineering and Physical Sciences Research Council of UK, and the Stanford Graduate Fellowship program.

.


Related Links
DOE/SLAC National Accelerator Laboratory
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





CARBON WORLDS
Can material rivaling graphene be mined out of rocks
Warsaw, Poland (SPX) Mar 19, 2014
Will one-atom-thick layers of molybdenum disulfide, a compound that occurs naturally in rocks, prove to be better than graphene for electronic applications? There are many signs that might prove to be the case. But physicists from the Faculty of Physics at the University of Warsaw have shown that the nature of the phenomena occurring in layered materials are still ill-understood and require furt ... read more


CARBON WORLDS
Safety lapses rapped after US nuclear plant fire

Contaminated Fukushima water may be dumped as problems mount

Fukushima: three years on and still a long road ahead

31 dead, nine missing in China lorry blast

CARBON WORLDS
Exelis completes transmitter assemblies for first GPS III satellite payload

New Airborne GPS Technology for Weather Conditions Takes Flight

Astro Aerospace Delivers Antennas For Next-Gen GPS III Satellites 3 through 6

ESA to certify first Galileo position fixes worldwide

CARBON WORLDS
New stratigraphic research makes Little Foot the oldest complete Australopithecus

Stirring the simmering 'designer baby' pot

Empathy chimpanzees offer is key to understanding human engagement

Natural selection has altered the appearance of Europeans over the past 5,000 years

CARBON WORLDS
Reintroduction experiments give new hope for a plant on the brink of extinction

Sea anemone is genetically half animal, half plant

Rocky Mountain wildflower season lengthens by more than a month

Japan retailer Rakuten slammed over ivory and whale meat products

CARBON WORLDS
Climate Conditions Help Forecast Meningitis Outbreaks

Two-year-old Cambodian girl dies of bird flu

When big isn't better: How the flu bug bit Google

Macau culls 7,500 chicken over bird flu scare

CARBON WORLDS
UN experts condemn death of Chinese dissident

Union Jack-waving fans greet Hong Kong's last governor

Migration in China: shifting slightly, but still going strong

Thousands mourn Shanghai's 'underground' bishop

CARBON WORLDS
Facebook announces steps to stop illegal gun sales

French navy arrests pirates suspected of oil tanker attack

Mexican vigilantes accuse army of killing four

Gunmen kill two soldiers in troubled Mexican state

CARBON WORLDS
China's politically-sensitive yuan falls after reform

China able to keep economic operation in proper range

Weak start to year a test for Beijing: analysts

China's Li says debt defaults 'hardly avoidable'




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.