Medical and Hospital News  
TIME AND SPACE
Scientists 'film' a quantum measurement
by Staff Writers
Stockholm, Sweden (SPX) Feb 27, 2020

Strontium ion trapped in an electric field. The measurement on the ion lasts only a millionth of a second.

Quantum physics describes the inner world of individual atoms, a world very different from our everyday experience. One of the many strange yet fundamental aspects of quantum mechanics is the role of the observer - measuring the state of a quantum system causes it to change. Despite the importance of the measurement process within the theory, it still holds unanswered questions: Does a quantum state collapse instantly during a measurement? If not, how much time does the measurement process take and what is the quantum state of the system at any intermediate step?

A collaboration of researchers from Sweden, Germany and Spain has answered these questions using a single atom - a strontium ion trapped in an electric field. The measurement on the ion lasts only a millionth of a second. By producing a "film" consisting of pictures taken at different times of the measurement they showed that the change of the state happens gradually under the measurement influence.

Atoms follow the laws of quantum mechanics which often contradict our normal expectations. The internal quantum state of an atom is formed by the state of the electrons circling around the atomic core. The electron can circle around the core in an orbit close or further away. Quantum mechanics, however, also allows so called superposition states, where the electron occupies both orbits at once, but each orbit only with some probability.

"Every time when we measure the orbit of the electron, the answer of the measurement will be that the electron was either in a lower or higher orbit, never something in between. This is true even when the initial quantum state was a superposition of both possibilities. The measurement in a sense forces the electron to decide in which of the two states it is", says Fabian Pokorny, researcher at the Department of Physics, Stockholm University.

The "film" displays the evolution during the measurement process. The individual pictures show tomography data where the height of the bars reveal the degree of superposition that is still preserved. During the measurement some of the superpositions are lost - and this loss happens gradually - while others are preserved as they should be for an ideal quantum measurement.

"These findings shed new light onto the inner workings of nature and are consistent with the predictions of modern quantum physics", says Markus Hennrich, group leader of the team in Stockholm.

These results are also important beyond fundamental quantum theory. Quantum measurement are an essential part of quantum computers. The group at Stockholm University is working on computers based on trapped ions, where the measurements are used to read out the result at the end of a quantum calculation.

Research paper


Related Links
Stockholm University
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
Otago physicists grab individual atoms in ground-breaking experiment
Dunedin, New Zealand (SPX) Feb 24, 2020
In a first for quantum physics, University of Otago researchers have "held" individual atoms in place and observed previously unseen complex atomic interactions. A myriad of equipment including lasers, mirrors, a vacuum chamber, and microscopes assembled in Otago's Department of Physics, plus a lot of time, energy, and expertise, have provided the ingredients to investigate this quantum process, which until now was only understood through statistical averaging from experiments involving large numb ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
US warns against cruise ship travel in Asia over coronavirus

Quarantine nightmare still not over for left-behind cruise ship crew

DIY virus protection: Hong Kongers making own masks amid shortages

Japan hits back at 'chaotic' cruise ship quarantine claims

TIME AND SPACE
Four BeiDou satellites start operation in network

Third Lockheed Martin-Built GPS III satellite delivered to Cape Canaveral

Honeywell nets $3B+ deal for new Air Force navigation system sustainment

Google Maps marks 15-year milestone with new features

TIME AND SPACE
New Neanderthal skeleton unearthed from 'flower burial' site

An adaptive gut microbiome might have shaped human evolution

Researchers were not right about left brains

'Ghost' of mysterious hominin found in West African genomes

TIME AND SPACE
Scientists warn humanity about worldwide insect decline

One-third of plant and animal species could be gone in 50 years

How some mammals pause their pregnancies

Four rare mountain gorillas 'killed by lightning' in Uganda

TIME AND SPACE
Hong Kong to give big cash handouts as economy reels from virus

Russia warns against travel to Italy, Iran, SKorea over virus

Hong Kong turns holiday camps into quarantine zones as virus fears spike

SARS lessons hang over China's fight against new virus

TIME AND SPACE
Virus-hit province rewards doctors' children with extra exam points

China appoints hardliner to Hong Kong office

Armed gang steals toilet rolls in panic-buying Hong Kong

Coronavirus casts shadow on China's big screen ambitions

TIME AND SPACE
Four Chinese sailors kidnapped in Gabon are free

Bolsonaro pardons Brazil security forces convicted of unintentional crimes

TIME AND SPACE








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.