. Medical and Hospital News .




TIME AND SPACE
Scientists propose revolutionary laser system to produce the next LHC
by Staff Writers
Southampton, UK (SPX) Apr 06, 2013


This is a fiber drawing tower at ORC. Credit: University of Southampton.

An international team of physicists has proposed a revolutionary laser system, inspired by the telecommunications technology, to produce the next generation of particle accelerators, such as the Large Hadron Collider (LHC).

The International Coherent Amplification Network (ICAN) sets out a new laser system composed of massive arrays of thousands of fibre lasers, for both fundamental research at laboratories such as CERN and more applied tasks such as proton therapy and nuclear transmutation.

Lasers can provide, in a very short time measured in femtoseconds, bursts of energy of great power counted in petawatts or a thousand times the power of all the power plants in the world.

Compact accelerators are also of great societal importance for applied tasks in medicine, such as a unique way to democratise proton therapy for cancer treatment, or the environment where it offers the prospect to reduce the lifetime of dangerous nuclear waste by, in some cases, from 100 thousand years to tens of years or even less.

However, there are two major hurdles that prevent the high-intensity laser from becoming a viable and widely used technology in the future. First, a high-intensity laser often only operates at a rate of one laser pulse per second, when for practical applications it would need to operate tens of thousands of times per second.

The second is ultra-intense lasers are notorious for being very inefficient, producing output powers that are a fraction of a percent of the input power. As practical applications would require output powers in the range of tens of kilowatts to megawatts, it is economically not feasible to produce this power with such a poor efficiency.

To bridge this technology divide, the ICAN consortium, an EU-funded project initiated and coordinated by the Ecole polytechnique and composed of the University of Southampton's Optoelectronics Research Centre, Jena and CERN, as well as 12 other prestigious laboratories around the world, aims to harness the efficiency, controllability, and high average power capability of fibre lasers to produce high energy, high repetition rate pulse sources.

The aim is to replace the conventional single monolithic rod amplifier that typically equips lasers with a network of fibre amplifiers and telecommunication components.

Gerard Mourou of Ecole polytechnique who leads the consortium says: "One important application demonstrated has been the possibility to accelerate particles to high energy over very short distances measured in centimetres rather than kilometres as it is the case today with conventional technology. This feature is of paramount importance when we know that today high energy physics is limited by the prohibitive size of accelerators, of the size of tens of kilometres, and cost billions of euros. Reducing the size and cost by a large amount is of critical importance for the future of high energy physics."

Dr Bill Brocklesby from the ORC adds: "A typical CAN laser for high-energy physics may use thousands of fibres, each carrying a small amount of laser energy. It offers the advantage of relying on well tested telecommunication elements, such as fibre lasers and other components. The fibre laser offers an excellent efficiency due to laser diode pumping. It also provides a much larger surface cooling area and therefore makes possible high repetition rate operation.

"The most stringent difficulty is to phase the lasers within a fraction of a wavelength. This difficulty seemed insurmountable but a major roadblock has in fact been solved: preliminary proof of concept suggests that thousands of fibres can be controlled to provide a laser output powerful enough to accelerate electrons to energies of several GeV at 10 kHz repetition rate - an improvement of at least ten thousand times over today's state of the art lasers."

Such a combined fibre-laser system should provide the necessary power and efficiency that could make economical the production of a large flux of relativistic protons over millimetre lengths as opposed to a few hundred metres.

One important societal application of such a source is to transmute the waste products of nuclear reactors, which at present have half-lives of hundreds of thousands of years, into materials with much shorter lives, on the scale of tens of years, thus transforming dramatically the problem of nuclear waste management.

CAN technology could also find important applications in areas of medicine, such as proton therapy, where reliability and robustness of fibre technology could be decisive features.

The results of this study are published in Nature Photonics.

.


Related Links
University of Southampton
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear

...





TIME AND SPACE
LHC upgrade could yield dark matter
Geneva, Switzerland (UPI) Apr 2, 2013
A $105 million upgrade of the Large Hadron Collider in Switzerland could double its power and let scientists probe mysterious "dark matter," researchers say. The improvements to the LHC particle accelerator, which last year enabled scientists to discover the Higgs Boson, will allow it to smash protons together at twice its current energy, they said. That could start the hunt for ... read more


TIME AND SPACE
Fukushima fuel cooling system stops again:TEPCO

Environmental policies matter for growing megacities

Finland's Fennovoima in talks with Rosatom over reactor

US drivers talk and text as much as ever

TIME AND SPACE
China preps civilian use of GPS system

GPS device could stem bike thefts

Apple patent shows pen with GPS, phone

Ground system improves satellite navigation precision

TIME AND SPACE
Women and men perform the same in math

Scientists identify brain's 'molecular memory switch'

Researchers successfully map fountain of youth

First evidence of Neanderthal/human mix

TIME AND SPACE
Kenya to toughen poaching sentences to save elephants

Invasive crabs help Cape Cod marshes

Rare river otter spotted near Colo. city

Endangered Vietnam elephant 'skinned, disemboweled'

TIME AND SPACE
South Africa rolls out new single dose AIDS drug

China boosts bird flu response as cases rise

China steps up response to bird flu cases

No proof China's H7N9 spreading between humans: WHO

TIME AND SPACE
Tibet disaster shows China resource divide

Chinese activist Chen meets Bush, urges pressure

Tibetan envoy says China can end immolations

China firm says first lady's style not for sale

TIME AND SPACE
US ships look to net big contraband catches in Pacific

US court convicts Somali pirates in navy ship attack

Ukraine to join NATO anti-piracy mission

16 gunmen killed in Thai military base attack: army

TIME AND SPACE
Crowdfunding gaining momentum: study

EU mulls tougher stand on tax dodgers

Walker's World: Printing more money

China's Xi says 'ultra-high speed' growth probably over




The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement