Medical and Hospital News  
STELLAR CHEMISTRY
Search for first stars uncovers 'dark matter'
by Staff Writers
Tel Aviv, Israel (SPX) Mar 01, 2018

illustration only

A team of astronomers led by Prof. Judd Bowman of Arizona State University unexpectedly stumbled upon "dark matter," the most mysterious building block of outer space, while attempting to detect the earliest stars in the universe through radio wave signals, according to a study published this week in Nature.

The idea that these signals implicate dark matter is based on a second Nature paper published this week, by Prof. Rennan Barkana of Tel Aviv University, which suggests that the signal is proof of interactions between normal matter and dark matter in the early universe. According to Prof. Barkana, the discovery offers the first direct proof that dark matter exists and that it is composed of low-mass particles.

The signal, recorded by a novel radio telescope called EDGES, dates to 180 million years after the Big Bang.

What the universe is made of
"Dark matter is the key to unlocking the mystery of what the universe is made of," says Prof. Barkana, Head of the Department of Astrophysics at TAU's School of Physics and Astronomy. "We know quite a bit about the chemical elements that make up the earth, the sun and other stars, but most of the matter in the universe is invisible and known as 'dark matter.' The existence of dark matter is inferred from its strong gravity, but we have no idea what kind of substance it is. Hence, dark matter remains one of the greatest mysteries in physics.

"To solve it, we must travel back in time. Astronomers can see back in time, since it takes light time to reach us. We see the sun as it was eight minutes ago, while the immensely distant first stars in the universe appear to us on earth as they were billions of years in the past."

Prof. Bowman and colleagues reported the detection of a radio wave signal at a frequency of 78 megahertz. The width of the observed profile is largely consistent with expectations, but they also found it had a larger amplitude (corresponding to deeper absorption) than predicted, indicating that the primordial gas was colder than expected.

Prof. Barkana suggests that the gas cooled through the interaction of hydrogen with cold, dark matter.

"Tuning in" to the early universe
"I realized that this surprising signal indicates the presence of two actors: the first stars, and dark matter," says Prof. Barkana. "The first stars in the universe turned on the radio signal, while the dark matter collided with the ordinary matter and cooled it down. Extra-cold material naturally explains the strong radio signal."

Physicists expected that any such dark matter particles would be heavy, but the discovery indicates low-mass particles. Based on the radio signal, Prof. Barkana argues that the dark-matter particle is no heavier than several proton masses. "This insight alone has the potential to reorient the search for dark matter," says Prof. Barkana.

Once stars formed in the early universe, their light was predicted to have penetrated the primordial hydrogen gas, altering its internal structure. This would cause the hydrogen gas to absorb photons from the cosmic microwave background, at the specific wavelength of 21 cm, imprinting a signature in the radio spectrum that should be observable today at radio frequencies below 200 megahertz. The observation matches this prediction except for the unexpected depth of the absorption.

Prof. Barkana predicts that the dark matter produced a very specific pattern of radio waves that can be detected with a large array of radio antennas. One such array is the SKA, the largest radio telescope in the world, now under construction. "Such an observation with the SKA would confirm that the first stars indeed revealed dark matter," concludes Prof. Barkana.

Research paper


Related Links
American Friends of Tel Aviv University
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
UMass Amherst physicists contribute to dark matter detector success
Amherst MA (SPX) Feb 22, 2018
In researchers' quest for evidence of dark matter, physicist Andrea Pocar of the University of Massachusetts Amherst and his students have played an important role in designing and building a key part of the argon-based DarkSide-50 detector located underground in Italy's Gran Sasso National Laboratory. This week, scientists from around the world who gathered at the University of California, Los Angeles, at the Dark Matter 2018 Symposium learned of new results in the search for evidence of the elus ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
L'Aquila, a quake-hit city still grateful to Berlusconi

For the love of gun: US couples take weapons to church

Indonesia calls off deadly landslide search, 18 believed dead

Venezuela's woes spread to zoos as animals feed on each other

STELLAR CHEMISTRY
Why Russia is one step ahead of US Army's plans for future GPS

Europe claims 100 million users for Galileo satnav system

Airbus selected by ESA for EGNOS V3 program

Pentagon probes fitness-app use after map shows sensitive sites

STELLAR CHEMISTRY
Seeing the brain's electrical activity

Buried at the stake: Underwater burial site yields skulls on poles

Brain can navigate based solely on smells

Chimps and bonobos don't need a translator

STELLAR CHEMISTRY
Malaysia elephant sanctuary trumpets effort to cut human-animal conflict

Mexican troops partner with activists to save vaquita porpoise

Indonesian woman mauled to death by crocodile

Birds are essential to the dispersion of rare wild chili pepper seeds

STELLAR CHEMISTRY
DARPA Names Researchers Working to Halt Outbreaks in 60 Days or Less

China confirms first human case of H7N4 bird flu

UV light can kill airborne flu virus, study finds

Playing 20 Questions with Bacteria to Distinguish Harmless Organisms from Pathogens

STELLAR CHEMISTRY
China's Xi takes another stride in Mao's footsteps

China investigates former top politician

In China's eSport schools students learn it pays to play

China takes over Anbang, prosecutes ex-boss for 'economic crimes'

STELLAR CHEMISTRY
India seeks custody of fugitive arrested in Hong Kong

Vietnam cops seize $2.5 mn heroin in China border drug bust

The roots of Italian mafia lie in the lemon industry, new research suggests

Thai navy says 11 million pill haul a record from Laos

STELLAR CHEMISTRY








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.