Medical and Hospital News  
CHIP TECH
Second quantum revolution a reality with chip-based atomic physics
by Staff Writers
Norman OK (SPX) Apr 05, 2016


The colormap on the surface shows the electric field amplitude. Image courtesy University of Oklahoma.

A University of Oklahoma-led team of physicists believes chip-based atomic physics holds promise to make the second quantum revolution--the engineering of quantum matter with arbitrary precision - a reality. With recent technological advances in fabrication and trapping, hybrid quantum systems are emerging as ideal platforms for a diverse range of studies in quantum control, quantum simulation and computing.

James P. Shaffer, professor in the Homer L. Dodge Department of Physics and Astronomy, OU College of Arts and Sciences; Jon Sedlacek, OU graduate student; and a team from the University of Nevada, Western Washington University, The United States Naval Academy, Sandia National Laboratories and Harvard-Smithsonian Center for Astrophysics, have published research important for integrating Rydberg atoms into hybrid quantum systems and the fundamental study of atom-surface interactions, as well as applications for electrons bound to a 2D surface.

"A convenient surface for application in hybrid quantum systems is quartz because of its extensive use in the semiconductor and optics industries," Sedlacek said.

"The surface has been the subject of recent interest as a result of it stability and low surface energy. Mitigating electric fields near 'trapping' surfaces is the holy grail for realizing hybrid quantum systems," added Hossein Sadeghpour, director of the Institute for Theoretical Atomic Molecular and Optical Physics, Harvard-Smithsonian Center for Astrophysics.

In this work, Shaffer finds ionized electrons from Rydberg atoms excited near the quartz surface form a 2D layer of electrons above the surface, canceling the electric field produced by rubidium surface adsorbates.

The system is similar to electron trapping in a 2D gas on superfluid liquid helium. The binding of electrons to the surface substantially reduces the electric field above the surface.

"Our results show that binding is due to the image potential of the electron inside the quartz," said Shaffer.

"The electron can't diffuse into the quartz because the rubidium adsorbates make the surface have a negative electron affinity. The approach is a promising pathway for coupling Rydberg atoms to surfaces as well as for using surfaces close to atomic and ionic samples."

A paper on this research was published in the American Physics Society's Physical Review Letters. The OU part of this work was supported by the Defense Advanced Research Projects Agency Quasar program by a grant through the Army Research Office, the Air Force Office of Scientific Research and the National Science Foundation.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Oklahoma
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CHIP TECH
Unlocking the gates to quantum computing
Brisbane, Australia (SPX) Mar 29, 2016
Researchers from Griffith University and the University of Queensland have overcome one of the key challenges to quantum computing by simplifying a complex quantum logic operation. They demonstrated this by experimentally realising a challenging circuit - the quantum Fredkin gate - for the first time. "The allure of quantum computers is the unparalleled processing power that they provide c ... read more


CHIP TECH
Japan's Nuclear Watchdog OKs Use of Soil Freezing for Protection of Water

Insurance for an uncertain climate

TEPCO bungles Fukushima cleanup as robots damaged by Radiation

Sierra Leone begins destroying stockpile of 'unuseable' arms

CHIP TECH
ISRO Developing 'Front-End Chip' for Satellite Navigation System

India to Launch Sixth Navigational Satellite on Thursday

Lockheed Martin building next generation of military GPS satellites

Traffic app says not at fault for Israel troops losing way

CHIP TECH
Study of Japanese hunter-gatherers suggests violence isn't inherent

Study: Indonesian 'hobbits' likely died out sooner than thought

Diet shaped human evolution

Human ancestors explored 'out of Africa' despite impaired nasal faculties

CHIP TECH
Ant antennae are a two-way communication system

Study finds vast diversity among viruses that infect bacteria

A savage world for frogs

Democratizing high-throughput single molecule force analysis

CHIP TECH
Scientists unlock genetic secret that could help fight malaria

Field Museum study reveals evolution of malaria

Potential Zika virus risk estimated for 50 US cities

Change in mosquito mating may control Zika virus

CHIP TECH
New Hong Kong independence party slammed by Chinese media

Dissidents say China relatives released in letter probe

Not in my name: China editor quits over Communist clampdown

Chinese police accuse overseas dissident's family of arson

CHIP TECH
10 gang suspects killed in northern Mexico

CHIP TECH
Japan big manufacturers' confidence drops to three-year low

China Construction Bank 2015 net profits flat

One-pronged strategy: China's Fosun vows to become 'giant unicorn'

Chinese banks see slight profit rises as economy slows









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.