Medical and Hospital News  
CHIP TECH
Semimetals are high conductors
by Staff Writers
Davis CA (SPX) Mar 19, 2019

Weyl semimetals are a new type of material between conductors and insulators. New work from UC Davis and Chinese researchers shows that two-dimensional nanobelts of niobium arsenide can show very high conductivity. On left, transmission EM of niobium arsenide nanobelts fabricated on the lab; the right-hand image is a higher magnification scanning EM showing the regular surface structure. Electrical current can flow easily because of the quantum properties of the nanomaterial.

Researchers in China and at UC Davis have measured high conductivity in very thin layers of niobium arsenide, a type of material called a Weyl semimetal. The material has about three times the conductivity of copper at room temperature, said Sergey Savrasov, professor of physics at UC Davis. Savrasov is a coauthor on the paper published March 18 in Nature Materials.

New materials that conduct electricity are of great interest to physicists and materials scientists, both for basic research and because they could lead to new types of electronic devices.

Savrasov works on theoretical condensed matter physics. With others, he proposed the existence of Weyl semimetals in 2011. The Chinese team were able to fabricate and test small pieces, called nanobelts, of niobium arsenide, confirming the predictions of theory. The nanobelts are so thin they are essentially two-dimensional.

"A Weyl semimetal is not a conductor or an insulator, but something in between," Savrasov said. Niobium arsenide, for example, is a poor conductor in bulk but has a metallic surface that conducts electricity. The surface is topologically protected, meaning that it cannot be changed without destroying the bulk material.

With most materials, surfaces can be chemically altered as they pick up impurities from the environment. These impurities can interfere with conductivity. But topologically protected surfaces reject these impurities.

"In theory we expect Weyl surfaces to be good conductors as they don't tolerate impurities," Savrasov said.

If you think of electrons flowing through material, imagine them bouncing off or scattering from impurities. At the quantum level, a conductive material has a Fermi surface which describes all the quantum energy states that electrons can occupy. This Fermi surface affects conductivity of the material.

The nanobelts tested in these experiments had a limited Fermi surface or Fermi arc, meaning that electrons could only be scattered to a limited range of quantum states.

"The Fermi arc limits the states electrons can bounce back to, therefore they are not scattered," Savrasov said.

Materials that are highly conductive at very small scales could be useful as engineers strive to build smaller and smaller circuits. Less electrical resistance means that less heat is generated as current passes through.


Related Links
University of California - Davis
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CHIP TECH
Quantum physicists succeed in controlling energy losses and shifts
Helsinki, Finland (SPX) Mar 15, 2019
Quantum computers need to preserve quantum information for a long time to be able to crack important problems faster than a normal computer. Energy losses take the state of the qubit from 1 to 0, destroying stored quantum information at the same time. Consequently, scientists all over the globe have traditionally worked to remove all sources of energy loss - or dissipation - from these exciting machines. Dr Mikko Mottonen from Aalto University and his research team have taken a different point of ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Hot or cold, rural residents more vulnerable to extreme temperatures

In Caracas, water an obsession after days of blackout

Fukushima: current state of the clean-up

US military asked to house 5,000 child migrants: Pentagon

CHIP TECH
IAI unveils improved anti-jamming GPS

Orolia launches the world's first Galileo enabled PLB

Angry Norway says Russia jamming GPS signals again

Kite-blown Antarctic explorers make most southerly Galileo positioning fix

CHIP TECH
Fossil teeth in Kenya help fill monkey evolution record gap

Chimps' cultural diversity threatened by humans, study says

The mind distracted: technology's battle for our attention

S.Leone chooses endangered chimpanzee as national icon

CHIP TECH
Fast and furious: Vietnam's elephant race draws cheers, and critics

Scientists share plans for planetwide biodiversity census

Ecologists find a 'landscape of fearlessness' in a war-torn savannah

Scientists engineer mouse 'smart house' to study behavior

CHIP TECH
Facebook launches offensive to combat misinformation on vaccines

After IS, Mosul tackles another terror: super-resistant bacteria

Global maps enabling targeted interventions to reduce burden of mosquito-borne disease

Electronic nose better at sniffing out disease-carrying dogs in Brazil

CHIP TECH
China's former energy chief accused of corruption

US envoy defends his criticism of Chinese religious persecution

Tibet supporters in India mark 60 years since uprising

The house always wins? Few trade war jitters as Macau's casinos boom

CHIP TECH
Sudan says Turkish naval ship to boost 'Red Sea security'

CHIP TECH








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.