Medical and Hospital News  
TECH SPACE
Shaping the future of purification
by Staff Writers
Thuwal, Saudi Arabia (SPX) Jun 23, 2022

stock illustration only

Impure chemical mixtures can now be separated based on differences in molecular silhouette. Membranes have been developed with nanoscale pores that match the shape of impurities in the mix so that only the impurity can pass through. KAUST researchers have suggested that the first application of these metal-organic framework (MOF) based shape-selective membranes could be energy-efficient, low-cost purification of natural gas.

MOFs are organic-inorganic hybrid crystalline porous materials that can feature different types of pores through their structure. By constructing MOFs from different organic and inorganic building blocks, researchers can finely tune the pore structure and aperture. MOF membranes have previously shown great potential for separating mixtures of molecules based on differences in their size or polarizability.

Natural gas, also known as methane, is predicted to play an increasingly important role in the global energy supply during the transition to renewables. Almost all natural gas reservoirs are contaminated with nitrogen. "The nitrogen dilutes the heating value of natural gas, so it has to be removed," says Sheng Zhou, a Ph.D. student in Mohamed Eddaoudi's lab, who led the research.

Nitrogen is chemically inert and similar in both kinetic shape and polarizability to methane, so cannot be removed by existing membranes. "For industrial natural gas purification, there needs to be nitrogen rejection units based on cryogenic distillation," Zhou says. This ultra-low temperature separation technique is expensive and energy intensive.

Eddauodi, Zhou and their colleagues have developed a highly efficient MOF-based method to purify methane. "We designed a porous membrane that separates nitrogen from methane by exploiting one significant difference between the molecules: their shape," Zhou says.

While nitrogen has a rod-like linear structure, methane has a triangular trefoil-type profile. The team created a new membrane material, named Zr-fum67-mes33-fcu-MOF, with asymmetric pores precisely shaped to block methane but allow nitrogen to pass through.

The team has now shown that, compared to cryogenic separation, the shape-selective MOF reduced purification costs by 66 percent for a methane stream containing 15 percent nitrogen.

Other potential impurities could also be removed. For methane contaminated with 35 percent carbon dioxide and 15 percent nitrogen, the purification cost was reduced by approximately 73 percent. "We saw a massive reduction in total purification cost when the membrane was used," says Osama Shekhah, a senior research scientist in Eddaoudi's lab.

Until now, shape difference in molecular mixtures has been largely ignored, Eddaoudi says. "Shape-mismatch induced separation is a totally new separation mechanism," he says. "Once people focus on shape-mismatch separation, they may find many chemical mixtures, such as linear and branched hydrocarbons or aromatic chemicals, that could be efficiently separated using this concept."

Research Report:Asymmetric pore windows in MOF membranes for natural gas valorization


Related Links
King Abdullah University of Science and Technology
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
Workers strike at world's largest copper producer, Chile's Codelco
Santiago (AFP) June 22, 2022
Workers at Chile's state mining company Codelco, the largest producer of copper in the world, went on an "indefinite" strike on Wednesday, unions said, protesting the closure of a foundry in one of the country's most polluted regions. Codelco announced last week that it would close the Ventanas foundry in the towns of Quintero and Puchuncavi. The Copper Workers Federation (FTC) released a statement saying there was "full support for this paralyzation (of work) in solidarity with the workers at t ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Freedom and fear: the foundations of America's deadly gun culture

UN working to get shelter, trauma care to Afghan quake scene

Iraqi migrant in UK fears Rwanda deportation, despite reprieve

One dead in Shanghai chemical plant explosion

TECH SPACE
The face of Galileo

Astrocast acquires Hiber, accelerates OEM strategy.

Volunteers watching the skies for the weather and stars

EUSPA celebrates its first 365 days of new Galileo operations

TECH SPACE
How humans evolved to get along

Healthy human brains are hotter than previously thought, exceeding 40 degrees

Are we born with a moral compass

Amazon's indigenous leaders make plea at Americas summit

TECH SPACE
Malawi to move 250 elephants from overpopulated park

Crunch talks kick off on global pact to protect nature

Thrice postponed UN biodiversity summit set for December

Biodiversity conference moved from China to Canada: UN

TECH SPACE
Macau shuts almost everything but casinos to battle Covid outbreak

Iraq confirms 13 cholera cases, scores suspected

Covid in Hong Kong shows 'signs of rebound', city leader says

US envoy sees China lockdowns extending into 2023

TECH SPACE
Hong Kong arrests 5 for sedition before China rule anniversary

Patten hits outs at China's 'vengeful' acts in Hong Kong

New Hong Kong cabinet includes four under US sanctions

China's Xi to host virtual summit for BRICS emerging economies

TECH SPACE
TECH SPACE








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.