Medical and Hospital News  
TECH SPACE
Shrinking the carbon footprint of a chemical in everyday objects
by Staff Writers
Boston MA (SPX) Apr 23, 2019

MIT researchers used these manganese oxide nanoparticles to catalyze the breakdown of water and the subsequent incorporation of oxygen into useful compounds called epoxides.

The biggest source of global energy consumption is the industrial manufacturing of products such as plastics, iron, and steel. Not only does manufacturing these materials require huge amounts of energy, but many of the reactions also directly emit carbon dioxide as a byproduct.

In an effort to help reduce this energy use and the related emissions, MIT chemical engineers have devised an alternative approach to synthesizing epoxides, a type of chemical that is used to manufacture diverse products, including plastics, pharmaceuticals, and textiles. Their new approach, which uses electricity to run the reaction, can be done at room temperature and atmospheric pressure while eliminating carbon dioxide as a byproduct.

"What isn't often realized is that industrial energy usage is far greater than transportation or residential usage. This is the elephant in the room, and there has been very little technical progress in terms of being able to reduce industrial energy consumption," says Karthish Manthiram, an assistant professor chemical engineering and the senior author of the new study.

The researchers have filed for a patent on their technique, and they are now working on improving the efficiency of the synthesis so that it could be adapted for large-scale, industrial use.

MIT postdoc Kyoungsuk Jin is the lead author of the paper, which appears online April 9 in the Journal of the American Chemical Society. Other authors include graduate students Joseph Maalouf, Nikifar Lazouski, and Nathan Corbin, and postdoc Dengtao Yang.

Ubiquitous chemicals
Epoxides, whose key chemical feature is a three-member ring consisting of an oxygen atom bound to two carbon atoms, are used to manufacture products as varied as antifreeze, detergents, and polyester.

"It's impossible to go for even a short period of one's life without touching or feeling or wearing something that has at some point in its history involved an epoxide. They're ubiquitous," Manthiram says. "They're in so many different places, but we tend not to think about the embedded energy and carbon dioxide footprint."

Several epoxides are among the chemicals with the top carbon footprints. The production of one common epoxide, ethylene oxide, generates the fifth-largest carbon dioxide emissions of any chemical product.

Manufacturing epoxides requires many chemical steps, and most of them are very energy-intensive. For example, the reaction used to attach an atom of oxygen to ethylene, producing ethylene oxide, must be done at nearly 300 degrees Celsius and under pressures 20 times greater than atmospheric pressure. Furthermore, most of the energy used to power this kind of manufacturing comes from fossil fuels.

Adding to the carbon footprint, the reaction used to produce ethylene oxide also generates carbon dioxide as a side product, which is released into the atmosphere. Other epoxides are made using a more complicated approach involving hazardous peroxides, which can be explosive, and calcium hydroxide, which can cause skin irritation.

To come up with a more sustainable approach, the MIT team took inspiration from a reaction known as water oxidation, which uses electricity to split water into oxygen, protons, and electrons. They decided to try performing the water oxidation and then attaching the oxygen atom to an organic compound called an olefin, which is a precursor to epoxides.

This was a counterintuitive approach, Manthiram says, because olefins and water normally cannot react with each other. However, they can react with each other when an electric voltage is applied.

To take advantage of this, the MIT team designed a reactor with an anode where water is broken down into oxygen, hydrogen ions (protons), and electrons. Manganese oxide nanoparticles act as a catalyst to help this reaction along, and to incorporate the oxygen into an olefin to make an epoxide. Protons and electrons flow to the cathode, where they are converted into hydrogen gas.

Thermodynamically, this reaction only requires about 1 volt of electricity, less than the voltage of a standard AA battery. The reaction does not generate any carbon dioxide, and the researchers anticipate that they could further reduce the carbon footprint by using electricity from renewable sources such as solar or wind to power the epoxide conversion.

Scaling up
So far, the researchers have shown that they can use this process to create an epoxide called cyclooctene oxide, and they are now working on adapting it to other epoxides. They are also trying to make the conversion of olefins into epoxides more efficient - in this study, about 30 percent of the electrical current went into the conversion reaction, but they hope to double that.

They estimate that their process, if scaled up, could produce ethylene oxide at a cost of $900 per ton, compared to $1,500 per ton using current methods. That cost could be lowered further as the process becomes more efficient. Another factor that could contribute to the economic viability of this approach is that it also generates hydrogen as a byproduct, which is valuable in its own right to power fuel cells.

The researchers plan to continue developing the technology in hopes of eventually commercializing it for industrial use, and they are also working on using electricity to synthesize other kinds of chemicals.

"There are many processes that have enormous carbon dioxide footprints, and decarbonization can be driven by electrification," Manthiram says. "One can eliminate temperature, eliminate pressure, and use voltage instead."


Related Links
Massachusetts Institute of Technology
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
Wonder materials: 2D phosphorene nanoribbons and 2D borophene get a closer look
Houston TX (SPX) Apr 17, 2019
Graphene can come from graphite. But borophene? There's no such thing as borite. Unlike its carbon cousin, two-dimensional borophene can't be reduced from a larger natural form. Bulk boron is usually only found in combination with other elements, and is certainly not layered, so borophene has to be made from the atoms up. Even then, the borophene you get may not be what you need. For that reason, researchers at Rice and Northwestern universities have developed a method to view 2D borophene c ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
IMF approves $118.2 mn rapid credit for Mozambique

Passerby in Rio military shooting dies from wounds

Extinction Rebellion: the green movement with global ambitions

Saudi, UAE send relief aid to flood-stricken Iran

TECH SPACE
Industry collaboration on avionics paves the way for GAINS navigation demonstration flights

Record-Breaking Satellite Advances NASA's Exploration of High-Altitude GPS

China, Arab states eye closer cooperation on satellite navigation to build "Space Silk Road"

Second GPS III satellite arrives at Cape Canaveral ahead of July launch

TECH SPACE
New microscopy method promises better picture of deep brain activity

Children judge people based on facial features, just like adults

Heads in the cloud: Scientists predict internet of thoughts 'within decades'

Multiple Denisovan-related ancestries in Papuans

TECH SPACE
Some fire ant colonies are ruled by multiple queens

Researchers restore functions to pig brains hours after death

Scientists measure what makes viper fangs so sharp

Malaysia arrests Vietnam poachers, seizes tiger, bear parts

TECH SPACE
Mother detained after Chinese vaccine protest

Child vaccination levels falling short in large parts of Africa

Space-enabled mobile laboratory ready for medical emergencies

Cyclone-hit Mozambique fears cholera epidemic

TECH SPACE
Prague honours late Chinese dissident Liu with bust

'Masters of our destiny': Myanmar's Wa rebels in show of force

'Masters of our destiny': Myanmar's Wa rebels in show of force

Blog fined for "defaming" Beijng buildings over feng shui

TECH SPACE
ICC president urges US to join global criminal court

Italy, Austria smash mafia arms trafficking ring: officials

Spain takes over EU anti-piracy mission from Britain due to Brexit

Sudan says Turkish naval ship to boost 'Red Sea security'

TECH SPACE








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.