. Medical and Hospital News .




.
NANO TECH
Single nanomaterial yields many laser colors
by Staff Writers
Providence RI (SPX) May 02, 2012

Colloidal quantum dots - nanocrystals - can produce lasers of many colors. Cuong Dang manipulates a green beam that pumps the nanocrystals with energy, in this case producing red laser light. Credit: Mike Cohea/Brown University.

Red, green, and blue lasers have become small and cheap enough to find their way into products ranging from BluRay DVD players to fancy pens, but each color is made with different semiconductor materials and by elaborate crystal growth processes.

A new prototype technology demonstrates all three of those colors coming from one material. That could open the door to making products, such as high-performance digital displays, that employ a variety of laser colors all at once.

"Today in order to create a laser display with arbitrary colors, from white to shades of pink or teal, you'd need these three separate material systems to come together in the form of three distinct lasers that in no way shape or form would have anything in common," said Arto Nurmikko, professor of engineering at Brown University and senior author of a paper describing the innovation in the journal Nature Nanotechnology.

"Now enter a class of materials called semiconductor quantum dots."

The materials in prototype lasers described in the paper are nanometer-sized semiconductor particles called colloidal quantum dots or nanocrystals with an inner core of cadmium and selenium alloy and a coating of zinc, cadmium, and sulfur alloy and a proprietary organic molecular glue.

Chemists at QD Vision of Lexington, Mass., synthesize the nanocrystals using a wet chemistry process that allows them to precisely vary the nanocrystal size by varying the production time.

Size is all that needs to change to produce different laser light colors: 4.2 nanometer cores produce red light, 3.2 nanometer ones emit green light and 2.5 nanometer ones shine blue. Different sizes would produce other colors along the spectrum.

The cladding and the nanocrystal structure are critical advances beyond previous attempts to make lasers with colloidal quantum dots, said lead author Cuong Dang, a senior research associate and nanophotonics laboratory manager in Nurmikko's group at Brown.

Because of their improved quantum mechanical and electrical performance, he said, the coated pyramids require 10 times less pulsed energy or 1,000 times less power to produce laser light than previous attempts at the technology.

Quantum nail polish
When chemists at QDVision brew a batch of colloidal quantum dots for Brown-designed specifications, Dang and Nurmikko get a vial of a viscous liquid that Nurmikko said somewhat resembles nail polish.

To make a laser, Dang coats a square of glass - or a variety of other shapes - with the liquid. When the liquid evaporates, what's left on the glass are several densely packed solid, highly ordered layers of the nanocrystals.

By sandwiching that glass between two specially prepared mirrors, Dang creates one of the most challenging laser structures, called a vertical-cavity surface-emitting laser. The Brown-led team was the first to make a working VCSEL with colloidal quantum dots.

The nanocrystals' outer coating alloy of zinc, cadmium, sulfur and that molecular glue is important because it reduces an excited electronic state requirement for lasing and protects the nanocrystals from a kind of crosstalk that makes it hard to produce laser light, Nurmikko said.

Every batch of colloidal quantum dots has a few defective ones, but normally just a few are enough to interfere with light amplification.

Faced with a high excited electronic state requirement and destructive crosstalk in a densely packed layer, previous groups have needed to pump their dots with a lot of power to push them past a higher threshold for producing light amplification, a core element of any laser. Pumping them intensely, however, gives rise to another problem: an excess of excited electronic states called excitons.

When there are too many of these excitons among the quantum dots, energy that could be producing light is instead more likely to be lost as heat, mostly through a phenomenon known as the Auger process.

The nanocrystals' structure and outer cladding reduces destructive crosstalk and lowers the energy needed to get the quantum dots to shine. That reduces the energy required to pump the quantum dot laser and significantly reduces the likelihood of exceeding the level of excitons at which the Auger process drains energy away.

In addition, a benefit of the new approach's structure is that the dots can act more quickly, releasing light before Auger process can get started, even in the rare cases when it still does start.

"We have managed to show that it's possible to create not only light, but laser light," Nurmikko said. "In principle, we now have some benefits: using the same chemistry for all colors, producing lasers in a very inexpensive way, relatively speaking, and the ability to apply them to all kinds of surfaces regardless of shape. That makes possible all kinds of device configurations for the future."

In addition to Nurmikko and Dang, another author at Brown is Joonhee Lee. QD Vision authors include Craig Breen, Jonathan Steckel, and Seth Coe-Sullivan, a company co-founder who studied engineering at Brown as an undergraduate.

Related Links
Brown University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



NANO TECH
Notre Dame paper examines nanotechnology-related safety and ethics problem
Notre Dame, IN (SPX) May 01, 2012
A recent paper by Kathleen Eggleson, a research scientist in the Center for Nano Science and Technology (NDnano) at the University of Notre Dame, provides an example of a nanotechnology-related safety and ethics problem that is unfolding right now. The world of nanotechnology, which involves science and engineering down at billionths-of-a-meter scales, might seem remote. But like most new ... read more


NANO TECH
Can Nature's Beauty Lift Citizens From Poverty?

EU hands extra 20 mln euros to Pakistan flood victims

S. Korea nuclear safety agency probes two plants

Construction of Chernobyl shelter starts on anniversary

NANO TECH
China launches two navigation satellites

Astrium built Galileo satellites fit and fully operational in orbit

First payload ready for next batch of Galileo satellites

NASA Tests GPS Monitoring System for Big US Quakes

NANO TECH
A middle-ear microphone

'Inhabitants of Madrid' ate elephants' meat and bone marrow 80,000 years ago

Eating more berries may reduce cognitive decline in the elderly

Learning mechanism of the adult brain revealed

NANO TECH
Antibiotic resistance flourishes in freshwater systems

Orangutans harbor ancient primate Alu

Not all altruism is alike

Why bigger animals aren't always faster

NANO TECH
Dutch okays mutant bird flu study's publication

Rio declares dengue epidemic

Climate right for Asian mosquito to spread in N. Europe

Scientists find members of measles virus family in bats

NANO TECH
China, US in talks to allow Chen to leave: activist

Chinese activist in US embassy: fellow dissident

Hong Kong delays China patriotism lessons

Disbelief in village over China activist's daring escape

NANO TECH
War planes strike suspected Somali pirate base: coastguard

India proposes norms for Indian Ocean anti-piracy patrols

Iran navy rescues China crew from hijacked freighter

Drones will seek pirates at sea

NANO TECH
China and India manufacturing boosts recovery hopes

China manufacturing at 13-month high

Walker's World: France, growth and Europe

Immigrants squeak out living as Athens scrap metal mongers


Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement