Medical and Hospital News  
TECH SPACE
Smart textiles made possible by flexible transmission lines
by Staff Writers
Lausanne, Switzerland (SPX) Jun 02, 2020

EPFL researchers have developed electronic fibers that, when embedded in textiles, can be used to collect data about our bodies by measuring fabric deformation. Their technology employs flexible transmission lines and offers a host of applications, including in the medical industry.

Professor Fabien Sorin and doctoral assistant Andreas Leber, at the Laboratory of Photonic Materials and Fibre Devices (FIMAP) in EPFL's School of Engineering, have developed a technology that can be used to detect a body's movements - and a whole lot more.

"Imagine clothing or hospital bed sheets capable of monitoring your breathing and physical gestures, or AI-powered textiles that allow humans to interact more safely and intuitively with robots" says Leber. "The flexible transmission lines that we've developed can do all of this."

The researchers invented a single sensor that can detect different kinds of fabric deformation like stretching, pressure and torque at the same time. "Finding a method for calculating all that was our biggest challenge, because it's really difficult for sensors to measure several movements simultaneously," says Leber.

"Also, conventional sensors have several drawbacks. First, they are fragile and break easily. Second, you need a lot of them to cover a large area, which eliminates many of the advantages of fabrics. And third, each type of conventional sensor can detect only one kind of deformation."

But by incorporating concepts from reflectometry, Sorin and Leber were able to create flexible fiber-shaped sensors that open up new doors for smart textiles. "Our technology works similar to a radar, but it sends out electrical impulses instead of electromagnetic waves," explains Leber.

"Our fiber sensors operate like transmission lines for high-frequency communication. The system measures the time between when a signal is sent out and when it's received, and uses that to determine the exact location, type and intensity of deformation."

This kind of detection technology has never before been used in applications requiring high mechanical flexibility and powerful electronic performance, which are two key features for distortion identification.?

Liquid metal and fiber optics
Creating the fibers is a complex task involving liquid metal, which serves as the conductor, and an optical fiber fabrication process. "The structure is just a few micrometers thick and has to be perfect, otherwise it won't work," says Leber. With these fibers, the entire surface of a fabric becomes one large sensor.

"The trick was to create transmission lines made entirely of flexible materials, using a simple method that can be scaled up easily," adds Sorin. The team's research drew on a variety of disciplines including electrical engineering, mechanical engineering, materials science and process engineering. The next step will be to make the technology more portable by shrinking the electronic component.


Related Links
Ecole Polytechnique FEdErale De Lausanne
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
The flame of discovery grows as Saffire sets new fires in space
Cleveland OH (SPX) May 21, 2020
NASA ignited another set of space fire experiments last week when Saffire IV lit a number of longer, stronger flames inside Northrop Grumman's Cygnus cargo spacecraft. Saffire, NASA's Spacecraft Fire Safety Demonstration Project, is a series of six experiments that investigate how fires grow and spread in space, especially aboard future spacecraft bound for the Moon and Mars. Just like Saffires I, II and III, the researchers began the experiment in Cygnus after it completed its primary Internation ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Heat, water woes and coronavirus: India's perfect storm

Chinese in Canada a target of increased hate during pandemic

China's mask boom takes fabric away for nappy makers

Pandemic gives Dubai chance to put tech to the test

TECH SPACE
Out-of-the-box spoofing mitigation with Galileo's OS-NMA service

Galileo in high latitudes and harsh environments

New BeiDou satellite starts operation in network

Velodyne Lidar announces multi-year sales agreement with GeoSLAM

TECH SPACE
Women with Neandertal gene give birth to more children

Similar to humans, chimpanzees develop slowly

Chimpanzees help trace the evolution of human speech back to ancient ancestors

Chimpanzee groups each have their own unique termite fishing cultures

TECH SPACE
Bumblebees nibble the leaves of flowers to trick them into flowering early

New sampling method allows scientists to observe cellular changes over time

Territorial aggression between bird species more common than thought

Botswana probes mysterious death of 12 elephants

TECH SPACE
Japan lifts emergency, India domestic flights resume

China virus city in transport shutdown as WHO delays decision

Europe boosts China flight checks as killer virus spreads

Global health emergencies: A rarely used call to action

TECH SPACE
China threatens US counter measures if punished for Hong Kong law

Trump sounds warning over Hong Kong's future

Macau casino tycoon Stanley Ho dies aged 98

China faces mounting pressure over Hong Kong;

TECH SPACE
Trump orders Pentagon to boost drug interdiction efforts

In Colombia, fleet of cartel narco-subs poses challenge for navy

TECH SPACE








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.