Medical and Hospital News
SOLAR DAILY
Solar cell-based hybrid energy harvesters towards sustainability
marker illustration only
Solar cell-based hybrid energy harvesters towards sustainability
by Staff Writers
Munich, Germany (SPX) Oct 16, 2023

Energy harvesting stands out as a vital player in our modern world. Solar energy, with its renewable and environmentally friendly characteristics, has gained immense popularity in various applications, ranging from small wearable electronics to powering large-scale systems. However, the challenge lies in making solar cells consistently reliable, as they are influenced by weather conditions.

This issue has sparked researchers to explore a novel solution: merging solar cells with other types of energy harvesters to create hybrid energy harvesters (HEHs). These hybrid systems use diverse mechanisms to capture energy from the surroundings. This review takes a closer look at four key types of energy harvesters: solar cells, triboelectric nanogenerators (TENGs), piezoelectric nanogenerators (PENGs), and thermoelectric generators (TEGs).

It zooms in on the recent advancements in solar cell-based hybrid energy harvesters (SCHEHs), shedding light on their structures and practical applications. The review outlines three specific designs that combine TENGs, PENGs, and TEGs with solar cells to create robust energy harvesters.

Additionally, it addresses the challenges faced in developing these hybrid systems and offers insights into the directions of potential research of SCHEHs. The driving force behind this research is the need to overcome the limitations of traditional energy sources and to make renewable energy technologies more dependable. By merging various energy harvesting methods, scientists aim to create more efficient and reliable energy solutions, contributing to a sustainable energy future.

The authors of this article review the progress of solar cell-based hybrid energy harvesters (SCHEHs) in recent years. It begins by explaining the principles and accomplishments of solar cells, triboelectric nanogenerators (TENGs), piezoelectric nanogenerators (PENGs), and thermoelectric generators (TEGs).

The review then involves the detailed structures of SCHEHs, explaining how they function and where they can be applied. Finally, the challenges faced in developing these hybrid systems are discussed, and the review concludes with insights into potential future advancements in this research field.

As we all know, the current energy challenges faced by society, including issues of availability, affordability, and sustainability, have spurred the need for a shift from fossil fuels to cleaner, renewable energy sources. This transition has led to a focus on energy harvesting, a technology that has numerous benefits such as sustainability, reduced reliance on external power sources, cost savings, and environmental advantages. Energy harvesting plays a pivotal role in offering clean and dependable power solutions across various applications, contributing to a more sustainable future.

The motivation behind this review arises from the limitations of traditional energy sources and the growing concern for environmental preservation. Researchers have turned their attention to renewable energy sources, aiming to develop devices that can generate electricity without harmful pollution. These devices, known as renewable energy harvesters, tap into different environmental sources like wind, solar radiation, human motion, water waves, and waste heat. Among these, solar cells have gained prominence due to their low maintenance costs, minimal carbon footprint, and abundant availability.

While solar cells have seen substantial advancements in power conversion efficiency and stability, they are still reliant on sunlight, making them susceptible to weather conditions. To address this challenge, scientists have been working on combining solar cells with other energy-harvesting technologies to create hybrid systems.

These systems, like triboelectric nanogenerators (TENGs), piezoelectric nanogenerators (PENGs), and thermoelectric generators (TEGs), can harness energy from the environment via different mechanisms. By integrating these technologies, researchers aim to create more stable and continuous power supplies, ensuring reliable energy generation even when sunlight is limited.

Overall, SCHEHs offer a really hopeful way to make energy conversion better and improve how energy-gathering systems can be used. These systems blend the good parts of solar panels with other ways of collecting energy. This helps in making better ways to create power for many different uses, like making things work without needing to plug them in, watching things from far away, and having smart ways to get around.

Beyond this, these systems play a big role in helping the world use more types of energy that won't run out. This is really important as the world tries to move to using more energy sources that are good for the planet. In summary, the idea of blending different ways to make power in a hybrid system looks really promising and has been getting a lot of attention recently.

This review highlights recent breakthroughs in the realm of solar cell-based hybrid energy harvesters (SCHEHs), combining triboelectric, piezoelectric, and thermoelectric methods. Solar energy, a leading contender in the energy landscape due to its clean and abundant nature, takes center stage. By teaming up solar cells with other energy harvesters, these hybrid setups can draw energy from multiple sources simultaneously, maximizing energy generation potential.

Solar cells primarily depend on sunlight, which can be hindered by various factors. Integrating alternative energy sources with solar energy ensures a consistent power supply. This strategic combination lets the system harvest energy from sources like mechanical vibrations and temperature differences, allowing continuous electricity generation even when sunlight is limited.

These hybrid systems capitalize on the unique strengths of each energy harvesting technique. For example, Solar cells shine in converting sunlight into electricity, while piezoelectric nanogenerators (PENGs) excel in converting mechanical vibrations into energy. By harmonizing these technologies, the hybrid system achieves optimal energy conversion efficiency and performance.

Furthermore, this integrated design increases power density, a significant advantage for space-constrained applications like wearables or small electronics. In cases where one component faces limitations, the others step in to maintain consistent power generation.

Overall, solar cell-based hybrid energy harvesters (SCHEHs) hold immense potential for improving energy conversion efficiency and expanding the versatility of energy harvesting systems. Through their innovative combination of solar cells and diverse energy harvesting techniques, they pave the way for sustainable and efficient power generation across various applications. As research in this field advances, we can anticipate even more effective and adaptable energy solutions.

Research Report:Solar cell-based hybrid energy harvesters towards sustainability

Related Links
TUM School of Natural Sciences
Compuscript
All About Solar Energy at SolarDaily.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
SOLAR DAILY
Improving organic solar cell efficiency through molecular engineering
Beijing, China (SPX) Oct 16, 2023
Polymer solar cells are lightweight, flexible solar panels that can be used for wearable devices. However, toxic halogenated processing solvents used during manufacturing of these solar cells have limited their widespread adoption. Alternatives to halogenated processing solvents are not nearly as soluble, thus requiring higher temperatures and longer processing times. Finding a way to remove the need for the halogenated processing solvents could improve organic solar cell efficiency and make polymer sol ... read more

SOLAR DAILY
Amid shortages in war-torn Gaza, doctors perform surgery with no anesthesia

G7 foreign ministers call for 'urgent' humanitarian pause in Gaza

US Supreme Court weighs whether abusers have right to own guns

U.N. pleads for Gaza access; Netanyahu offers 'tactical little pauses' but no cease-fire

SOLAR DAILY
PASSport project testing

Zephr raises $3.5M to bring next-gen GPS to major industries

Satnav test on remote island lab

Trimble and Kyivstar to provide GNSS correction services in Ukraine

SOLAR DAILY
How "blue" and "green" appeared in a language that didn't have words for them

Brain health in over 50s deteriorated more rapidly during the pandemic

Eternal rest -- at the foot of a tree

Iraq dig unearths 2,700-year-old winged sculpture largely intact

SOLAR DAILY
EU strikes deal on key biodiversity bill

Endangered Galapagos tortoises suffer from human waste: study

Diplomatic snub? Washington's pandas head home to China

Researchers reveal true crabs' epic ancient odyssey from sea to land and back again

SOLAR DAILY
Bird flu kills more than 500 marine mammals in Brazil

Top Chinese virus expert dead at 60

Study discounts belief 1918 flu pandemic targeted healthy young adults

Bangladesh swamped by record dengue deaths

SOLAR DAILY
Chinese former bank chief given life in prison for bribery

China's 'Singles Day' shopping bonanza loses its lustre

China ready to improve ties with US 'at all levels': VP

Chinese tech mogul not seen in weeks after official probe: reports

SOLAR DAILY
EU probes AliExpress to examine curbs on illegal products

Myanmar rebels fire top officials wanted by China for online scams

China opposes sanctions, says fentanyl crisis 'rooted in' US

Myanmar junta angry at China over crime blockbuster 'tarnishing'

SOLAR DAILY
Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.