. Medical and Hospital News .




MERCURY RISING
Spacecraft Finds New Evidence for Water Ice on Mercury
by Staff Writers
Washington DC (SPX) Nov 30, 2012


Shown in red are areas of Mercury's north polar region that are in shadow in all images acquired by MESSENGER to date. Image coverage, and mapping of shadows, is incomplete near the pole. The polar deposits imaged by Earth-based radar are in yellow (from Image 2.1), and the background image is the mosaic of MESSENGER images from Image 2.2. This comparison indicates that all of the polar deposits imaged by Earth-based radar are located in areas of persistent shadow as documented by MESSENGER images. Updated from N. L. Chabot et al., Journal of Geophysical Research, 117, doi: 10.1029/2012JE004172 (2012). Image Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington/National Astronomy and Ionosphere Center, Arecibo Observatory. More images and captions can be seen here.

New observations by the MESSENGER spacecraft provide compelling support for the long-held hypothesis that Mercury harbors abundant water ice and other frozen volatile materials in its permanently shadowed polar craters.

Three independent lines of evidence support this conclusion: the first measurements of excess hydrogen at Mercury's north pole with MESSENGER's Neutron Spectrometer, the first measurements of the reflectance of Mercury's polar deposits at near-infrared wavelengths with the Mercury Laser Altimeter (MLA), and the first detailed models of the surface and near-surface temperatures of Mercury's north polar regions that utilize the actual topography of Mercury's surface measured by the MLA.

Given its proximity to the Sun, Mercury would seem to be an unlikely place to find ice. But the tilt of Mercury's rotational axis is almost zero - less than one degree - so there are pockets at the planet's poles that never see sunlight. Scientists suggested decades ago that there might be water ice and other frozen volatiles trapped at Mercury's poles.

The idea received a boost in 1991, when the Arecibo radio telescope in Puerto Rico detected unusually radar-bright patches at Mercury's poles, spots that reflected radio waves in the way one would expect if there were water ice. Many of these patches corresponded to the location of large impact craters mapped by the Mariner 10 spacecraft in the 1970s. But because Mariner saw less than 50 percent of the planet, planetary scientists lacked a complete diagram of the poles to compare with the images.

MESSENGER's arrival at Mercury last year changed that. Images from the spacecraft's Mercury Dual Imaging System taken in 2011 and earlier this year confirmed that radar-bright features at Mercury's north and south poles are within shadowed regions on Mercury's surface, findings that are consistent with the water-ice hypothesis.

Now the newest data from MESSENGER strongly indicate that water ice is the major constituent of Mercury's north polar deposits, that ice is exposed at the surface in the coldest of those deposits, but that the ice is buried beneath an unusually dark material across most of the deposits, areas where temperatures are a bit too warm for ice to be stable at the surface itself.

MESSENGER uses neutron spectroscopy to measure average hydrogen concentrations within Mercury's radar-bright regions. Water-ice concentrations are derived from the hydrogen measurements.

"The neutron data indicate that Mercury's radar-bright polar deposits contain, on average, a hydrogen-rich layer more than tens of centimeters thick beneath a surficial layer 10 to 20 centimeters thick that is less rich in hydrogen," writes David Lawrence, a MESSENGER Participating Scientist based at The Johns Hopkins University Applied Physics Laboratory and the lead author of one of the papers. "The buried layer has a hydrogen content consistent with nearly pure water ice."

Data from MESSENGER's Mercury Laser Altimeter (MLA) - which has fired more than 10 million laser pulses at Mercury to make detailed maps of the planet's topography - corroborate the radar results and Neutron Spectrometer measurements of Mercury's polar region, writes Gregory Neumann of the NASA Goddard Space Flight Center.

In a second paper, Neumann and his colleagues report that the first MLA measurements of the shadowed north polar regions reveal irregular dark and bright deposits at near-infrared wavelength near Mercury's north pole.

"These reflectance anomalies are concentrated on poleward-facing slopes and are spatially collocated with areas of high radar backscatter postulated to be the result of near-surface water ice," Neumann writes. "Correlation of observed reflectance with modeled temperatures indicates that the optically bright regions are consistent with surface water ice."

The MLA also recorded dark patches with diminished reflectance, consistent with the theory that the ice in those areas is covered by a thermally insulating layer. Neumann suggests that impacts of comets or volatile-rich asteroids could have provided both the dark and bright deposits, a finding corroborated in a third paper led by David Paige of the University of California, Los Angeles.

Paige and his colleagues provided the first detailed models of the surface and near-surface temperatures of Mercury's north polar regions that utilize the actual topography of Mercury's surface measured by the MLA.

The measurements "show that the spatial distribution of regions of high radar backscatter is well matched by the predicted distribution of thermally stable water ice," he writes.

According to Paige, the dark material is likely a mix of complex organic compounds delivered to Mercury by the impacts of comets and volatile-rich asteroids, the same objects that likely delivered water to the innermost planet.The organic material may have been darkened further by exposure to the harsh radiation at Mercury's surface, even in permanently shadowed areas.

This dark insulating material is a new wrinkle to the story, says Sean Solomon of the Columbia University's Lamont-Doherty Earth Observatory, principal investigator of the MESSENGER mission.

"For more than 20 years the jury has been deliberating on whether the planet closest to the Sun hosts abundant water ice in its permanently shadowed polar regions. MESSENGER has now supplied a unanimous affirmative verdict."

"But the new observations have also raised new questions," adds Solomon.

"Do the dark materials in the polar deposits consist mostly of organic compounds? What kind of chemical reactions has that material experienced? Are there any regions on or within Mercury that might have both liquid water and organic compounds? Only with the continued exploration of Mercury can we hope to make progress on these new questions."

These findings are presented in three papers published online in Science Express.

.


Related Links
MESSENGER at NASA
MESSENGER at APL
News Flash at Mercury
Mars News and Information at MarsDaily.com
Lunar Dreams and more






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear

...





MERCURY RISING
Large ice deposits found on planet nearest the sun
Washington (AFP) Nov 29, 2012
Scientists Thursday announced new evidence that Mercury, the planet orbiting nearest the Sun, hosts massive caches of ice and revealed new information on how water reached our solar system's inner planets. "The new data indicate the water ice in Mercury's polar regions, if spread over an area the size of Washington, D.C., would be more than two miles (3.2 kilometers) thick," said David Lawre ... read more


MERCURY RISING
South Carolina Air National Guard's Eagle Vision IV Supports "Superstorm Sandy's" First Responders

Pakistan landslides kill three soldiers, bury rescuers

A month after superstorm Sandy, suffering lingers

Fed official sees only slight GDP hit from Sandy

MERCURY RISING
Retired GIOVE-A satellite helps SSTL demonstrate first High Altitude GPS navigation fix

GTX Gets Approval For Custom Two-Way GPS Tracking Devices On Planes

East Riding Of Yorkshire Council Selects Ctrack For Specialist Vehicle Tracking Solution

Researchers Use GPS Tracking to Monitor Crab Behavior

MERCURY RISING
Native Americans and Northern Europeans more closely related than previously thought

Long-held memory tenet challenged

A 3-D light switch for the brain

Scientists improve dating of early human settlement

MERCURY RISING
South Sudan's elephants face extinction: experts

Thais hunt for killer tiger after second deadly attack

'Life of Pi' shows bond, but tigers face human threat

Male chimpanzees choose their allies carefully

MERCURY RISING
Zambia court told HIV prisoners denied drugs, proper food

Pakistan clerics join fight against AIDS

AIDS: Chinese study raises flag over drugs-as-prevention hope

Stigma for Central America's HIV-positive kids

MERCURY RISING
British ministers 'banned from meeting Dalai Lama'

Blind Chinese lawyer's nephew jailed for 3 years

China dissident brands nephew's conviction 'revenge'

China jails local government 'interceptors': report

MERCURY RISING
Four Chinese hostages freed in Colombia

Piracy will swell again if seas not policed: S.African Navy

Mekong River attackers get death sentences

West African pirates target oil tankers

MERCURY RISING
Walker's World: French dis-connection

Asia manufacturing rises, analysts warn of headwinds

Outside View: Soaking the rich

Investors turn to car parks as H.K. property cools




The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement