Medical and Hospital News  
ROCKET SCIENCE
Spiky ferrofluid thrusters can move satellites
by Staff Writers
Houghton MI (SPX) Jul 12, 2017


A ferrofluid is a magnetic liquid that turns spiky in a magnetic field. Add an electric field and each needle-like spike emits a jet of ions, which could solve micropropulsion for nanosatellites in space. Image courtesy Sarah Bird/Michigan Tech.

Brandon Jackson, a doctoral candidate in mechanical engineering at Michigan Technological University, has created a new computational model of an electrospray thruster using ionic liquid ferrofluid - a promising technology for propelling small satellites through space. Specifically, Jackson looks at simulating the electrospray startup dynamics; in other words, what gives the ferrofluid its characteristic spikes.

He is the lead author of a recent article in Physics of Fluids, "Ionic Liquid Ferrofluid Interface Deformation and Spray Onset Under Electric and Magnetic Stresses".

More than 1,300 active satellites orbit the Earth. Some are the size of a school bus, and others are far smaller, the size of a shoebox or a smart phone.

Small satellites can now perform the missions of much larger and more expensive spacecraft, due to advances in satellite computational and communications systems. However, the tiny vehicles still need a more efficient way to maneuver in space.

Scaled-down plasma thrusters, like those deployed on larger-class satellites, do not work well. A more promising method of micropropulsion is electrospray.

Electrospray involves microscopic, hollow needles that use electricity to spray thin jets of fluid, pushing the spacecraft in the opposite direction. But the needles have drawbacks. They are intricate, expensive and easily destroyed.

To solve this problem, L. Brad King, Ron and Elaine Starr Professor in Space Systems at Michigan Tech, is creating a new kind of microthruster that assembles itself out of its own propellant when excited by a magnetic field. The tiny thruster requires no fragile needles and is essentially indestructible.

"We're working with a unique material called an ionic liquid ferrofluid," King says, explaining that it's both magnetic and ionic, a liquid salt. "When we put a magnet underneath a small pool of the ferrofluid, it turns into a beautiful hedgehog structure of aligned peaks. When we apply a strong electric field to that array of peaks, each one emits an individual micro-jet of ions."

The phenomenon is known as a Rosensweig instability. The peaks also heal themselves and re-grow if they are somehow damaged.

King came up with the idea of using ferrofluids for thrusters in 2012. He was trying to make an ionic liquid that behaved like a ferrofluid when he learned about a research team at the University of Sydney led by Brian Hawkett and Nirmesh Jain. They had developed a ferrofluid from magnetic nanoparticles made by the life sciences company Sirtex.

King's early work with the ferrofluid sample was pure trial and error; the results were good, but the physics were poorly understood. That's when the Air Force Office of Scientific Research (AFOSR) gave King a contract to research the fluid physics of ferrofluid.

Enter Jackson, whose doctoral work is advised by King.

"Typically among engineers, there are experimentalists who build and measure things, or there are modelers who simulate things," King says. "Brandon excels at both."

Working in King's Ion Space Propulsion Laboratory, Jackson conducted an experimental and computational study on the interfacial dynamics of the ferrofluid, and created a computational model of ionic liquid ferrofluid electrosprays.

"We wanted to learn what led up to emission instability in one single peak of the ferrofluid microthruster," Jackson says, who developed a model for a single peak and conducted rigorous testing to ensure the model was correct.

The team gained a much better understanding of the relationships between magnetic, electric and surface tension stresses. Some of the data gathered through the model surprised them.

"We learned that the magnetic field has a large effect in preconditioning the fluid electric stress," Jackson says, explaining this discovery might lead to a better understanding of the unique behaviors of ferrofluid electrosprays.

The AFOSR recently awarded King a second contract to continue researching the physics of ferrofluids, and he says, "Now we can take what we've learned, and instead of modeling a single peak, we'll scale it up and model multiple peaks."

Their next set of experiments will be more like a thruster, though a working thruster is still several years away. Although making 100 peaks or more, all thrusting identically, will be much more challenging.

"Often in the lab we'll have one peak working and 99 others loafing. Brandon's model will be a vital tool for the team going forward," King says. "If we are successful, our thruster will enable small inexpensive satellites with their own propulsion to be mass produced. That could improve remote sensing for better climate modeling, or provide better internet connectivity, which three billion people in the world still do not have."

The team has also begun collaborating with Juan Fernandez de la Mora, a professor of mechanical engineering and materials science at Yale University, one of the world's leading experts in electrospray.

In addition to spacecraft propulsion, ferrofluid electrospray technology could be useful in spectrometry, pharmaceutical production, and nanofabrication. Michigan Tech has a pending patent for the technology.

Research paper

ROCKET SCIENCE
Aerojet Rocketdyne tests Advanced Electric Propulsion System
Sacramento CA (SPX) Jul 10, 2017
Aerojet Rocketdyne has successfully conducted a series of hot-fire tests on a Power Processing Unit (PPU) for an Advanced Electric Propulsion System (AEPS) designed to advance the nation's commercial space capabilities as well as support NASA's plans for deep space exploration. The tests were conducted at NASA's Glenn Research Center in Cleveland, Ohio. "The Power Processing Unit successfu ... read more

Related Links
Michigan Technological University
Rocket Science News at Space-Travel.Com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ROCKET SCIENCE
Civilian deaths soar in Iraq, Syria: monitoring group

West Mosul residents start mammoth task of rebuilding

In IS-held Raqa, parched civilians risk lives for water

EU ministers pledge steps to tackle migrant flood

ROCKET SCIENCE
India Plans to Roll Out National GPS Next Year

Orbital Alliance Techsystems receives contract for GPS artillery

Europe's Galileo satnav identifies problems behind failing clocks

New orbiters for Europe's Galileo satnav system

ROCKET SCIENCE
Towards a High-Resolution, Implantable Neural Interface

DNA of early Neanderthal gives timeline for new modern human-related dispersal from Africa

Researchers document early, permanent human settlement in Andes

Analysis of Neanderthal teeth grooves uncovers evidence of prehistoric dentistry

ROCKET SCIENCE
'Sixth extinction' of wildlife faster than feared: scientists

Three tonnes of ivory seized in Vietnam

The big ecological roles of small natural features

Birth of wolf cubs in Mexico raises hopes for endangered species

ROCKET SCIENCE
Purdue researcher: We shouldn't eliminate mosquitoes

Scientists piece together extinct horsepox virus, raising biosecurity concerns

Sri Lanka deploys troops to tackle dengue crisis

Painless patch could replace flu jab: study

ROCKET SCIENCE
Anti-Beijing Hong Kong lawmakers disqualified from parliament

China hits back at criticism over Nobel laureate's death

China under pressure to free dissident's widow

China's ailing Nobel laureate in 'critical condition'

ROCKET SCIENCE
US lists China among worst human trafficking offenders

Golden Triangle narco-gangs churning out new highs, UN warns

UN counter-drug official kidnapped in Colombia: officials

ROCKET SCIENCE








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.