Medical and Hospital News
CHIP TECH
Stanford University sends semiconductor investigation to ISS
A scanning electron microscope view of the crystallites.
Stanford University sends semiconductor investigation to ISS
by Staff Writers
Kennedy Space Center FL (SPX) Jun 09, 2023

In recent years, the world has focused on shifting away from fossil fuels, with the goal of using renewable energy sources as the future means of powering the globe. Currently, 22% of global energy production comes from various renewable energy sources, like photovoltaic devices, which are a fast-growing contributor to solar energy solutions.

To create more energy-efficient photovoltaic devices, researchers are turning to the International Space Station (ISS) National Laboratory, and the results could improve how we power the globe.

Researchers from Stanford University sent an investigation to the space station on SpaceX's 28th Commercial Resupply Services (CRS) mission. The project aims to leverage microgravity to improve the synthesis of materials for photovoltaic devices designed to convert sunlight into electricity for solar energy applications.

The team will anneal copper indium sulfide (CuInS2) semiconductor crystals in space in an effort to reduce defects that commonly occur in crystal production on Earth. Higher-quality CuInS2 crystals would enable the development of photovoltaic devices that are more efficient.

"By doing the annealing process in microgravity, we hope to create more uniform crystals that have an even electrical conductivity," said Jessica Frick, a research engineer at Stanford University.

According to Frick, this uniformity is key to making more efficient solar cell products. "If there are defects in the crystals or if there is an inhomogeneous spread of defects, it's going to affect electron transfer, which affects how well solar energy is transferred to electrical energy."

In solar cells, light from the sun is collected and transformed into electrical energy that can power an array of devices. For that to happen, electrons travel through a circuit with the help of semiconductors. Frick says that if there are impurities or an uneven concentration of impurities in semiconductor crystals, you can get areas of electrical resistance and areas of fast connection.

Producing semiconductor crystals in space could help solve this problem because the gravity-driven forces that contribute to crystal impurities on Earth are removed. For their investigation, Frick and her team are sending CuInS2 crystals to the space station, where they will be heated and cooled in a process called annealing.

The crystals will be heated to approximately 400 degrees Celsius and then allowed to cool down before being sent back to Earth for analysis. The team hopes the space-based conditions will enable them to produce higher-quality crystals than what can be manufactured on Earth.

Related Links
International Space Station (ISS) National Laboratory
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
CHIP TECH
'Heat highways' could keep electronics cool
Washington DC (SPX) Jun 07, 2023
As smart electronic devices become smaller and more powerful, they can generate a lot of heat, leading to slower processing times and sudden shutdowns. Now, in ACS Applied Nano Materials, researchers use an electrospinning approach to produce a new nanocomposite film. In tests, the film dissipated heat four times more efficiently than similar materials, showing that it could one day be used to keep electronics cool. Smaller and smarter electronics have revolutionized many aspects of life, from com ... read more

CHIP TECH
UN says Myanmar junta halts humanitarian access to cyclone survivors

Dutch to send rescue boats, water pumps to Ukraine

Children lost for 40 days in Colombian Amazon found alive

Ukraine PM calls dam destruction 'environmental catastrophe'

CHIP TECH
LEO PNT satellite signal simulator debuts at JNC 2023 conference

Northrop Grumman to produce new maritime navigation sensor for US Navy

Galileo Second Generation enters full development phase

Royal navy tests quantum sensor for future navigation systems

CHIP TECH
AI chatbots offer comfort to the bereaved

Iraq's Christians fight to save threatened ancient language

Serotonin's impact across molecular and whole-brain levels in a simple animal

Oldest architectural plans detail mysterious desert mega structures

CHIP TECH
Pirarucu: Amazon's giant air-breathing fish in poachers' sights

White rhinos reintroduced to DR Congo national park

Seeing through eyes made of stone

In Cyprus no-man's land, owls come to the rescue of farmers

CHIP TECH
13 dead from Congo haemorrhagic fever in Iraq this year

Study: Covid-19 has reduced diverse urban interactions

Vaccine printer could help vaccines reach more people

Mozambique cholera cases surge tenfold after cyclone

CHIP TECH
China jails human rights lawyer for state subversion

Hong Kong, China step up security on Tiananmen crackdown anniversary

Hong Kong performance artists detained on Tiananmen anniversary eve

Singapore and China to establish secure defense telephone link

CHIP TECH
US sanctions Chinese, Mexican entities over drug equipment

Malaysia searches Chinese ship suspected of looting WWII wrecks

People smugglers use TikTok to promote their services

Colombia's Petro accuses Gulf Clan cartel of breaking ceasefire

CHIP TECH
Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.