. Medical and Hospital News .




.
CLIMATE SCIENCE
Statistical Analysis Projects Future Temperatures In North America
by Pam Frost Gorder
Columbus OH (SPX) May 16, 2012

Statisticians at Ohio State University and the University of Cincinnati used spatial statistics and different regional climate models to build a consensus of likely temperature changes across North America. In this image, the color intensity corresponds to the temperature change expected by 2070, measured in degrees Celsius. The greatest temperature increases occur in the north, particularly in the Hudson Bay. Image by Noel Cressie and Emily Kang, courtesy of Ohio State University.

For the first time, researchers have been able to combine different climate models using spatial statistics - to project future seasonal temperature changes in regions across North America. They performed advanced statistical analysis on two different North American regional climate models and were able to estimate projections of temperature changes for the years 2041 to 2070, as well as the certainty of those projections.

The analysis, developed by statisticians at Ohio State University, examines groups of regional climate models, finds the commonalities between them, and determines how much weight each individual climate projection should get in a consensus climate estimate.

Through maps on the statisticians' website, people can see how their own region's temperature will likely change by 2070 - overall, and for individual seasons of the year.

Given the complexity and variety of climate models produced by different research groups around the world, there is a need for a tool that can analyze groups of them together, explained Noel Cressie, professor of statistics and director of Ohio State's Program in Spatial Statistics and Environmental Statistics.

Cressie and former graduate student Emily Kang, now at the University of Cincinnati, present the statistical analysis in a paper published in the International Journal of Applied Earth Observation and Geoinformation.

"One of the criticisms from climate-change skeptics is that different climate models give different results, so they argue that they don't know what to believe," he said.

"We wanted to develop a way to determine the likelihood of different outcomes, and combine them into a consensus climate projection. We show that there are shared conclusions upon which scientists can agree with some certainty, and we are able to statistically quantify that certainty."

For their initial analysis, Cressie and Kang chose to combine two regional climate models developed for the North American Regional Climate Change Assessment Program.

Though the models produced a wide variety of climate variables, the researchers focused on temperatures during a 100-year period: first, the climate models' temperature values from 1971 to 2000, and then the climate models' temperature values projected for 2041 to 2070. The data were broken down into blocks of area 50 kilometers (about 30 miles) on a side, throughout North America.

Averaging the results over those individual blocks, Cressie and Kang's statistical analysis estimated that average land temperatures across North America will rise around 2.5 degrees Celsius (4.5 degrees Fahrenheit) by 2070.

That result is in agreement with the findings of the United Nations Intergovernmental Panel on Climate Change, which suggest that under the same emissions scenario as used by NARCCAP, global average temperatures will rise 2.4 degrees Celsius (4.3 degrees Fahrenheit) by 2070.

Cressie and Kang's analysis is for North America - and not only estimates average land temperature rise, but regional temperature rise for all four seasons of the year.

Cressie cautioned that this first study is based on a combination of a small number of models. Nevertheless, he continued, the statistical computations are scalable to a larger number of models. The study shows that climate models can indeed be combined to achieve consensus, and the certainty of that consensus can be quantified.

The statistical analysis could be used to combine climate models from any region in the world, though, he added, it would require an expert spatial statistician to modify the analysis for other settings.

The key is a special combination of statistical analysis methods that Cressie pioneered, which use spatial statistical models in what researchers call Bayesian hierarchical statistical analyses.

The latter techniques come from Bayesian statistics, which allows researchers to quantify the certainty associated with any particular model outcome. All data sources and models are more or less certain, Cressie explained, and it is the quantification of these certainties that are the building blocks of a Bayesian analysis.

In the case of the two North American regional climate models, his Bayesian analysis technique was able to give a range of possible temperature changes that includes the true temperature change with 95 percent probability.

After producing average maps for all of North America, the researchers took their analysis a step further and examined temperature changes for the four seasons. On their website, they show those seasonal changes for regions in the Hudson Bay, the Great Lakes, the Midwest, and the Rocky Mountains.

In the future, the region in the Hudson Bay will likely experience larger temperature swings than the others, they found.

That Canadian region in the northeast part of the continent is likely to experience the biggest change over the winter months, with temperatures estimated to rise an average of about 6 degrees Celsius (10.7 degrees Fahrenheit) - possibly because ice reflects less energy away from the Earth's surface as it melts. Hudson Bay summers, on the other hand, are estimated to experience only an increase of about 1.2 degrees Celsius (2.1 degrees Fahrenheit).

According to the researchers' statistical analysis, the Midwest and Great Lakes regions will experience a rise in temperature of about 2.8 degrees Celsius (5 degrees Fahrenheit), regardless of season. The Rocky Mountains region shows greater projected increases in the summer (about 3.5 degrees Celsius, or 6.3 degrees Fahrenheit) than in the winter (about 2.3 degrees Celsius, or 4.1 degrees Fahrenheit).

In the future, the researchers could consider other climate variables in their analysis, such as precipitation.

Related Links
Ohio State University
Climate Science News - Modeling, Mitigation Adaptation




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



CLIMATE SCIENCE
EU issues warning to carbon tax rebels China, India
Brussels (AFP) May 15, 2012
The European Union on Tuesday gave China and India a month to comply with a new airline carbon emissions fee coming into effect across the bloc, or face penalties for flights in and out of Europe. EU Commissioner for Climate Change Connie Hedegaard said all EU airlines and "nearly all" world airlines had agreed to hand over emissions data required under a controversial carbon levy on air tra ... read more


CLIMATE SCIENCE
Lebanese army deploys in Tripoli areas hit by fighting

German insurer Allianz says profits soar 60%

Economists list cheapest ways to save the world

2012 not end of world for Mayans after all

CLIMATE SCIENCE
Habits and hidden journeys of ocean giants

Navigating the shopping center

For smartphone users: location, location, location

S. Korea to urge N. Korea to stop GPS jamming

CLIMATE SCIENCE
Evolution's gift may also be at the root of a form of autism

Wall art from France said world's oldest

Anthropologist finds explanation for hominin brain evolution in famous fossil

Extra gene drove instant leap in human brain evolution

CLIMATE SCIENCE
Report details biodiversity concerns

Neighboring chimp communities have their own nut-cracking styles

Frozen tiger parts among Thai police wildlife haul

Big-mouthed babies drove the evolution of giant island snakes

CLIMATE SCIENCE
US AIDS relief program saved 740,000 lives: study

HIV/AIDS patients at higher risk of cardiac death: study

Botswana makes new pitch for circumcision in AIDS fight

Advanced genetic screening method may speed vaccine development

CLIMATE SCIENCE
China dissident tells US of abuse of family

Jesus and Mary Chain reconnect in China

Communist veterans call for China police czar's ouster

China wrests back control after Chen debacle

CLIMATE SCIENCE
EU navies launch first land strike on Somali pirate assets

Ship guards trigger clashes with pirates

War planes strike suspected Somali pirate base: coastguard

India proposes norms for Indian Ocean anti-piracy patrols

CLIMATE SCIENCE
China slowdown presents challenge for Beijing

Europe debt crisis biggest risk for Japan economy: PM

Asia safe from Europe woes, no China hard landing: Fitch

China's output growth at near three-year low


Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement