Subscribe free to our newsletters via your
. Medical and Hospital News .




TECH SPACE
Steering chemical reactions with laser pulses
by Staff Writers
Vienna, Austria (SPX) Apr 25, 2014


This image shows short laser pulses interacting with ethylene. Image courtesy Vienna University of Technology.

Usually, chemical reactions just take their course, much like a ball rolling downhill. However, it is also possible to deliberately control chemical reactions: at the Vienna University of Technology, molecules are hit with femtosecond laser pulses, changing the distribution of electrons in the molecule. This interaction is so short that at first it does not have any discernable influence on the atomic nuclei, which have much more mass than the electrons.

However, the disturbance of the electron distribution can still initiate chemical processes and eventually separate the nuclei from each other. The properties of the laser pulse determine which chemical final products are created.

Controlling Chemistry
Chemists can choose which molecules they want to take part in a chemical reaction - but the result is usually determined by the physical and chemical properties of molecules and by external parameters such as the temperature.

The reaction itself cannot be controlled. Researchers at the Vienna University of Technology (Photonics Institute) have now succeeded in directly inducing the splitting of hydrocarbons such as ethylene (C2H4) or acetlyene (C2H2) into smaller fragments.

"We are using two different laser pulses", says Markus Kitzler (TU Vienna). "The first pulse takes about 50 femtoseconds and makes the molecules rotate at different speeds." After some time, all molecules are approximately aligned - and then the second laser pulse is applied, which only lasts for five femtoseconds, less than two oscillations of the light wave. This pulse changes the state of the electrons; it can even remove electrons from the molecule.

Selecting a Reaction Path
Electrons weigh much less than atomic nuclei. Therefore the electrons can be influenced dramatically by the laser pulse, whereas the heavier nuclei are much too inert for any observable motion in this short period of time. If, however, exactly the right electrons are removed from the molecule, the molecule can be made to break at a specific position. That way, acetylene (C2H2) can be broken up into CH2+, CH+, or carbon ions (C+).

"Various reaction paths are possible. For the first time, we managed to distinguish these paths and select the reaction we want", says Markus Kitzler.

An extremely short laser pulse - five femtoseconds (5.10^(-15) seconds) are just five millionths of a billionth of a second - initiates a chemical process, which takes place on a much larger timescale. This is similar to a short explosion at precisely the right places, which may cause a huge building to sway and eventually collapse.

The composition of chemical end products can be controlled by a number of different parameters: The alignment of the molecules by the first laser pulse, the duration and the intensity of the second pulse, which ionizes the molecules.

The experiments were done by Markus Kitzler's research team, his postdoc Xinhua Xie played a leading role in data analysis. Katharinia Doblhoff-Dier and Prof. Stefanie Grafe from Jena University and Erik Lotstedt, from Tokyo University contributed model calculations, which were invaluable for the interpretation of the experimental results.

The experimental results have now been published in two scientific publications: In "Physical Review Letters" and "Physical Review X".

.


Related Links
Vienna University of Technology
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
ISS to Beam Video via Laser Back to Earth
Pasadena CA (JPL) Apr 16, 2014
A team of about 20 working at NASA's Jet Propulsion Laboratory in Pasadena, Calif., through the lab's Phaeton early-career-hire program, led the development of the Optical Payload for Lasercomm Science (OPALS) investigation, which is preparing for an April 14 launch to the International Space Station aboard the SpaceX-3 mission. The goal? NASA's first optical communication experiment on the orbi ... read more


TECH SPACE
Guides, climbers prepare to leave Everest

Taiwan typhoon victims lose compensation suit

No Everest summits likely this season: expedition official

Searchers face tough choices in hunt for MH370

TECH SPACE
Russia eyes building Glonass stations in 36 countries

Turn your satnav ideas into business

Russia's GLONASS Fully Restored After System Failure

World's First Satellite Communicator with Built-In Navigation

TECH SPACE
What gave us the advantage over extinct types of humans

Cyber buddy is better than 'no buddy'

It's a bubble, but not as we know it

Too many chefs: Smaller groups exhibit more accurate decision-making

TECH SPACE
Wildlife response to climate change is likely underestimated

Brain size matters when it comes to animal self-control

Hamster-sized deer born in Spain

China approves jail for rare wild animal eaters: Xinhua

TECH SPACE
Re-Emergence of Ebola Focuses Need for Global Surveillance Strategies

A plague in your family

Catching more than fish: Ugandan town crippled by AIDS

New tool advances investigations of disease outbreaks

TECH SPACE
Most back to work after China shoe factory strike

China offers cash in Xinjiang for tips on beards: report

China petitioners face ban on direct appeals to Beijing

China underlines interest in Latin American investment

TECH SPACE
Vietnam says 7 killed in shooting on China border

Kidnappers demand $11 mln for Chinese tourist

Malaysia kidnappers telephone Chinese victim's family

China presses Malaysia to rescue kidnapped tourist

TECH SPACE
Caterpillar reports higher profits, warns of China, Ukraine risks

Bitcoin exchange MtGox to start liquidation process

China manufacturing improves slightly; Beijing to open up private investment

Cyber risks can cause disruption on scale of 2008 crisis: study




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.