Medical and Hospital News  
STELLAR CHEMISTRY
Stellar explosion in Earth's proximity
by Staff Writers
Munich, Germany (SPX) Oct 01, 2020

This manganese crust started to grow about 20 million years ago. It grew layer by layer until it was retrieved a few years ago and analyzed in the Maier-Leibnitz-Laboratory at the Technical University of Munich. In layers that are around 2.5 million years old, the researchers found iron-60 and elevated levels of manganese-53. Their occurrence is evidence of a near-Earth supernova 2.5 million years ago.

When the brightness of the star Betelgeuse dropped dramatically a few months ago, some observers suspected an impending supernova - a stellar explosion that could also cause damage on Earth. While Betelgeuse has returned to normal, physicists from the Technical University of Munich (TUM) have found evidence of a supernova that exploded near the Earth around 2.5 million years ago.

The life of stars with a mass more than ten times that of our sun ends in a supernova, a colossal stellar explosion. This explosion leads to the formation of iron, manganese and other heavy elements.

In layers of a manganese crust that are around two and a half million years old a research team led by physicists from the Technical University of Munich has now confirmed the existence of both iron-60 and manganese-53.

"The increased concentrations of manganese-53 can be taken as the "smoking gun" - the ultimate proof that this supernova really did take place," says first author Dr. Gunther Korschinek.

While a very close supernova could inflict massive harm to life on Earth, this one was far enough away. It only caused a boost in cosmic rays over several thousand years. "However, this can lead to increased cloud formation," says co-author Dr. Thomas Faestermann. "Perhaps there is a link to the Pleistocene epoch, the period of the Ice Ages, which began 2.6 million years ago."

Ultra-trace analysis
Typically, manganese occurs on earth as manganese-55. Manganese-53, on the other hand, usually stems from cosmic dust, like that found in the asteroid belt of our solar system. This dust rains down onto the earth continuously; but only rarely do we perceive larger specks of dust that glow as meteorites.

New sediment layers that accumulate year for year on the sea floor preserve the distribution of the elements in manganese crusts and sediment samples. Using accelerator mass spectrometry, the team of scientists has now detected both iron-60 and increased levels of manganese-53 in layers that were deposited about two and a half million years ago.

"This is investigative ultra-trace analysis," says Korschinek. "We are talking about merely a few atoms here. But accelerator mass spectrometry is so sensitive that it even allows us to calculate from our measurements that the star that exploded must have had around 11 to 25 times the size of the sun."

The researchers were also able to determine the half-life of manganese-53 from comparisons to other nuclides and the age of the samples. The result: 3.7 million years. To date, there has only been a single measurement to this end worldwide.

Research Report: Supernova-Produced 53Mn on Earth


Related Links
Technical University of Munich
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Scientists precisely measure total amount of matter in the universe
Riverside CA (SPX) Sep 29, 2020
A top goal in cosmology is to precisely measure the total amount of matter in the universe, a daunting exercise for even the most mathematically proficient. A team led by scientists at the University of California, Riverside, has now done just that. Reporting in the Astrophysical Journal, the team determined that matter makes up 31% of the total amount of matter and energy in the universe, with the remainder consisting of dark energy. "To put that amount of matter in context, if all the matt ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Pandemic panners: Indonesians hunt for gold in desperate times

Stranded babies, sobbing parents: Pandemic splits surrogates from families

TikTok urges social media alliance against suicide content

Greek PM to visit storm-stricken areas as reconstruction begins

STELLAR CHEMISTRY
Fourth GPS 3 Satellite Encapsulated Ahead of Launch

Government to explore new ways of delivering 'sat nav' for the UK

Tech combo is a real game-changer for farming

Launch of Russia's Glonass-K satellite postponed until October

STELLAR CHEMISTRY
Modern humans arrived in Western Europe 5,000 years earlier than thought

Unveiling: Malaysian activist fights for hijab freedom

Did our early ancestors boil their food in hot springs

DNA data shows not all Vikings were Scandinavian

STELLAR CHEMISTRY
Pet trade threatens thousands of species, especially reptiles

Suspected bacteria infection kills 12 more Zimbabwe elephants

Nations commit to reverse nature loss by 2030

Life still precarious for pangolins despite Vietnam's illegal trade crackdown

STELLAR CHEMISTRY
Going it alone on Covid-19 brings 'greater disaster': China foreign minister

Nasal spray reduces exhaled aerosol particles by 99%, study shows

Rebound and reflection in Wuhan as virus claims million lives

Beijing passes law to protect medical whistleblowers

STELLAR CHEMISTRY
Families fear for Hong Kong fugitives in China custody

Chinese tycoon and Xi critic jailed for 18 years for corruption

The big fish caught in Xi Jinping's anti-graft net

Young Australian an unlikely target for China's fury

STELLAR CHEMISTRY
Death toll rises to 11 in Colombia rioting over police killing

USS Detroit deployed for counternarcotics operations

Mexico to probe extrajudicial killing by army; 6 killed as Peru forces clash traffickers

'Virtual kidnappings' warning for Chinese students in Australia

STELLAR CHEMISTRY








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.