Medical and Hospital News  
ENERGY TECH
Striking the right note on a magnetic violin
by Staff Writers
Washington DC (SPX) Nov 11, 2015


Researchers used the rectangular coils shown here to strike the magnetic fields that enclose the donut-shaped plasma. The colors of the plasma denote the different vibrations produced by striking the fields with external magnetic coils. Image courtesy of Princeton Plasma Physics Laboratory and General Atomics. For a larger version of this image please go here.

The swirling plasma in donut-shaped fusion facilities called tokamaks are subject to intense heat bursts that can damage the vessel's walls. Halting or mitigating these bursts, called Edge Localized Modes (ELMs), is a key goal of fusion research.

While physicists have long known that they could suppress ELMs by pushing and pulling on the plasma with magnetic fields, they frequently found that doing so destabilized the core of the plasma. The reason for this was that perturbing the plasma as they were doing always led to the same response, like producing the same note when striking a tuning fork.

Now scientists at General Atomics and the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) have found an effective way to mitigate ELMs without adversely affecting plasma in the core region. They were able to do this because the magnetic fields that enclose the plasma are like the strings on a violin that produce notes when struck with the fields from external magnetic coils (Figure 1). And one of these notes, the researchers found, is particularly useful for preventing ELMs.

They discovered this note by pushing and pulling the fields that encircle the tokamak for two rotations instead of the standard one during experiments on the DIII-D National Fusion Facility that General Atomics operates for the DOE in San Diego. This produced a very stable mode of response that can be used to help control the edge of the plasma.

The researchers verified these findings with diagnostics that showed the different plasma responses to the two-rotation perturbations. "We now understand how to pluck just the notes that sound the best, giving us the power to fine-tune our plasmas" says Nikolas Logan, who led the research team with Carlos Paz-Soldan of General Atomics and will give an invited talk on the results at the 57th Annual Meeting of the APS Division of Plasma Physics.

These finding could have important implications for ITER, the multinational tokamak being built in France. They suggest that ITER may be able to use the newly discovered results to prevent or mitigate ELMs without impacting overall performance.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
American Physical Society
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
Explaining a mysterious barrier to fusion known as the 'density limit'
Washington DC (SPX) Nov 11, 2015
For more than 50 years physicists have puzzled over a daunting mystery: Why do tokamak plasmas spiral apart when reaching a certain maximum density and halt fusion reactions? This "density limit" serves as a barrier that prevents tokamaks from operating at peak efficiency, and understanding what sets this maximum density would speed the development of fusion as a safe, clean and abundant energy ... read more


ENERGY TECH
McMurdo extends search and rescue ecosystem with new comsat solution

McMurdo completes MEOSAR satellite ground station in New Zealand

Italy's painstaking bid to identify shipwrecked migrants

Painfully slow rebuild after Philippine super typhoon

ENERGY TECH
Orbital ATK products enable improved global positioning on Earth

Galileo pair preparing for December launch

GPS IIF satellite successfully launched from Cape Canaveral

U.S. Air Force prepares to launch next GPS IIF satellite

ENERGY TECH
Early proto-porcelain from China likely made from local materials

Environment and climate helped shape varied evolution of human languages

Divisive religious beliefs humanity's biggest challenge: Grayling

Predicting the human genome using evolution

ENERGY TECH
Indonesia orangutans attacked by villagers after fleeing fires

Tanzanian police arrest four Chinese with 11 rhino horns

Ice-age lesson: Large mammals need room to roam

Ancient long-extinct amphibians discovered in Brazil

ENERGY TECH
Monkeys in Asia harbor virus from humans, other species

Over 230,000 vaccinated in Iraq anti-cholera campaign

What ever happened to West Nile virus

Ebola: The epidemic's timeline

ENERGY TECH
Beijing's Communist Party deputy chief probed for graft

China two-child policy to add 3 million babies a year: officials

China artist comes out... as French

The loneliness of China's long-serving enforcers

ENERGY TECH
Villagers recall fear as troops fired in 'Chapo' raid

Chinese 'thief' swallowed diamond, tried to flee Thailand

Army's role questioned in missing Mexican students case

ENERGY TECH
China industrial output up 5.6% on year: govt

Weak China inflation stokes fears over slowing demand

Weak China inflation stokes fears over slowing demand

China gives currency largest boost in a decade









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.