Medical and Hospital News  
TECH SPACE
Stronger than spider silk: Bagworm silk enables strong conducting fibers
by Staff Writers
Tsukuba, Japan (SPX) Oct 28, 2021

Researchers at the University of Tsukuba have harnessed the strength of bagworm silk to produce a strong conductive fiber. To obtain this novel fiber, the research team combined bagworm silk with polyaniline as a conducting polymer. The composite fibers act as an optical waveguide and are suitable for use in textile transistors. This production of a bagworm silk/polyaniline composite will enable the use of biocompatible conducting fibers for applications ranging from microelectronics to biomedical engineering.

Think spider silk is strong? Recent work has shown that bagworm silk is superior to spider silk in both strength and flexibility. Building on these findings, a research team at the University of Tsukuba, led by Professor Hiromasa Goto, has harnessed the strength of bagworm silk to produce a strong, flexible, conductive fiber. This research may lead to new flexible electronic devices, such as wearable electronic materials.

Owing to its high flexibility and strength, spider silk has received much attention for uses ranging from medicine to aerospace applications. By combining natural silk, such as spider silk, with synthetic conductive polymers, researchers can produce textiles with conduction, light emission, and photovoltaic functions. It is also possible to create biocompatible materials that can be used in regenerative medicine and biomedical materials.

"We've taken the next step from previous research efforts by utilizing the strongest known natural fiber - bagworm silk," explains Professor Goto.

In this study, the research team combined polyaniline, a conducting polymer that can be easily synthesized, with bagworm silk obtained from a bagworm nest. The composite fibers obtained from the silk and polyaniline were 2 microns in diameter and acted as optical waveguides.

The investigators demonstrated that green laser light propagates along these fibers, while remaining confined within each fiber. To determine the magnetic properties of the material, the investigators performed superconducting interference device (SQUID) measurements.

The results revealed that the composite fibers can act as paramagnets: the fibers become magnetized when placed in an external magnetic field. By applying the bagworm silk/polyaniline composite in a field-effect transistor device, the research team also confirmed that the composite fiber is suitable for use in textile transistors.

As illustrated by this work, the strength of bagworm silk and the conductive properties of polyaniline can be combined, resulting in a new flexible material with desirable characteristics. "With the mass production of bagworm silk," says Professor Goto, "these fibers can be developed for various practical applications-for example, as electromagnetic inference shields, conductive textile wires, and anticorrosion textiles."

This successful production of a strong conductive fiber comprised of bagworm silk and polyaniline will pave the path toward the application of these fibers in a variety of fields such as tissue engineering and microelectronics.

Research Report: "Preparation of bagworm silk/polyaniline composite"


Related Links
University Of Tsukuba
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
Concrete: the world's 3rd largest CO2 emitter
Paris (AFP) Oct 19, 2021
If concrete were a country, it would be the third largest emitter of greenhouse gases on Earth, behind only China and the United States. How can this material, essential for global housing, construction and infrastructure, be made less damaging to the planet? - How bad can it be? - Cement is the most utilised material on Earth, consumed to make concrete at a rate of some 150 tonnes each second. According to the Global Cement and Concrete Association (GCCA), around 14 billion cubic metres ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Bangladesh's shanty towns for climate refugees

A first for search and rescue from space

Fires, floods, flying insects: 10 recent climate-fuelled disasters

U.S. Navy, Lebanese military to improve construction, humanitarian capabilities

TECH SPACE
Thales Alenia Space to build prototype EGNOS ground station for ESA

Galileo ground control segment ready for full operational capability

France lops metre off Mont Blanc's official height

Enhanced BeiDou short message service displayed at int'l summit

TECH SPACE
'We're ignorant': Illiteracy haunts isolated Venezuelan village

Great ape's consonant and vowel-like sounds travel over distance without losing meaning

Strangers less awkward, more interested in deep conversation than people think

Study reveals extent of impact of human settlement on island ecosystems

TECH SPACE
Northern white rhino retired from world-first breeding project

Hawf nature reserve: rare respite in war-torn Yemen

Origins of domesticated horses traced to north Caucasus region, study finds

Venezuelan couple goes all out for smiling but endangered sloths

TECH SPACE
China locks down city of four million over Covid cases

Beijing launches new mass testing wave after four Covid cases found

Flights cancelled, schools closed as China fights virus outbreak

Beijing rolls out Covid-19 booster shots ahead of Olympics

TECH SPACE
Hong Kong rights lawyer invokes Tiananmen 'tank man' at trial

Alibaba shares soar after Jack Ma reported on Europe trip

Biden ambassador pick dubs China 'aggressor'

Superfans lie low as China cracks down on 'false idols'

TECH SPACE
Iran's navy says repulses pirate attack in Gulf of Aden

TECH SPACE








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.